
   

BIOL425 Biostatistical Analysis:  

Laboratory Manual 
 

A work in progress… 
 

 

 

 

George W. Gilchrist 

Spring 2005 



BIOL425/680 Spring 2005 Introduction 

 2 



BIOL425/680 Spring 2005 Introduction 

 3 

Introduction 
 
This is the lab manual for BIOL425/680 Biostatistical Analysis. Each week when you come to 
lab, you will be work on that week’s exercises. You will start (and often finish) the material 
during the lab period. Instructions on how to format and turn in your work are part of the first 
exercise. Philosophically, I think that learning the statistics and learning to use the software that 
enables you to do statistics should happen together. Not everyone feels that way. Many folks use 
a dumbed-down software package for teaching because they think that you can then concentrate 
on the conceptual issues rather than the logistical issues. I disagree. I have used nearly all of the 
statistical software that is available, and it rarely takes long before you have to choose between 
doing what the dumbed-down package will allow you to do and what you think you ought to do. 
That is an appalling situation. What is more, you waste a lot of time, effort, and money learning 
to use a tool that will almost certainly be inadequate for your research career. So, prepare to bite 
the bullet… 

This manual, along with the book by Dalgaard, introduces you to the statistical package, R. R is 
an Open Source adaptation of S-Plus, which is the commercial version of a Bell Labs open-
source program called S. If you are not confused yet, just wait a few minutes. Anyway, we are 
using R because 1) it is free and 2) it is a very powerful piece of software, and 3) it is the best all-
around statistics and graphing package available. The biggest advantages of R over other 
statistical packages are the flexibility of the program and the quality of the graphics. You can 
find a lot of stuff written for and about R and S-Plus on the web. Good sources include the R-
Project (http://www.r-project.org/) and StatLib (http://lib.stat.cmu.edu/). One of the most 
valuable resources for a working applied statistician is the wonderful R-help listserver, where 
you can get answers to questions about using R for doing almost anything from a group of 
world-class statisticians. Note that there is a rather elaborate etiquette for posting to a group like 
this (i.e., you better read the manuals carefully before asking questions or people will not be very 
nice about answering!)  

Like the entire Open Source movement, R is most at home in the Unix environment, but it has 
been ported to virtually every operating system. If you have a Mac with OS X, you may have a 
glimmer of how great Unix OS, and the OS X shell is simply the best computing environment 
you will encounter. We have a nice group of OS X laptops to use in the lab, but if you have your 
own Mac or a Windows/Linux machine, you can install all of the software on it. Different builds 
of R on different OS’s may have some interface options, but NONE has any buttons or pulldown 
menus for doing the statistics. I hope by the end of this class you will realize that such time-
wasters have no place in a real statistics program.  

You will login to the MacLab computers with your W&M account name and password. Your 
home directory (the so-called H: drive in Windoze world) will be mounted for you (if the login 
process seems slow, it is because the entire contents of your home directory are being loaded 
onto the computer in front of you). Note that these computers cannot be operated without a 
connection to the campus network!  

There are at least three different ways to run R on most computers: from the so-called GUI, from 
the terminal window, and from inside of other programs like emacs (see below). R-GUI for OS 
X has a command editor built in and it works pretty well. If you want to do what the pro’s do, 
you will learn use the Unix editor emacs. There is a lisp (that’s a programming language) 
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extension to emacs called ESS (emacs Speaks Statistics) that allows you to work in an editor 
menu and, with a few keystrokes, send your commands to R for processing. It is yet another 
thing to learn, however and it looks pretty scary when you start. There are many advantages, 
however, and most serious users use emacs/ESS. If you want to learn this, I can give you one or 
two hints, but you are pretty much on your own. One can do nearly as well with a simple text 
editor, like TextEdit or Notepad, and cutting and pasting into a terminal window running R. But 
that is getting a bit ahead of ourselves. 

 

Conventions 

Courier font is used for commands and output from the R terminal. Arial is used to denote pull-
down menu options or applications other than R. Boldface is used to define technical terms and 
to highlight stuff that is important. Mathematical variables are in italics.  
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Overview of file system basics 

All computers mount hard drives, cd-roms, network drives, zip drives, etc. as Volumes. In 
Windows, some of these are assigned specific names, like C: for your boot hard drive and (at 
W&M) H:\  for your network drive. In all UNIX based systems, including OS X, these drives are 
mounted in /Volumes, where your network drive is listed as userid$. 

The complete path to your home directory on your boot hard drive is 

Windows: “C:\Documents and Settings\userid” 
OS X/UNIX: “/Users/userid” 

The complete path to your network drive at William and Mary is 

Windows: “H:\” 
OS X/UNIX: “/Volumes/userid$”  

The $ is used to indicate that it is a network drive rather than a local drive. 

It is a simple fact that ALL software programs need to be told where to look for files. Some 
accomplish this through a series of menus, whereas in others (command line…) require you to 
type the path. In both cases, you specify where the program is to look for and save files.  

In R, you can set a working directory where the program will automatically look for and write 
files. Basically, this sets the path specification so that you do not have to type it every time. 
Clearly it is an advantage to have your R script files {*.r) and your data files (*.txt or *.csv) 
copied to that working directory so that you do not need to type in the full path. One can set up 
many directories for different projects, but only ONE can be the working directory at one time. 
You can access files in other directories ONLY by typing in the full path to that file. If you don’t 
give the full path, the program will simply look in the current working directory. Note that your 
R objects created during a session are saved in the current working directory. 

Where should you set up the “Stats” directory for this class? First, there is nothing magic about 
this name; you can call it anything you want. I use “Stats” because it is short, descriptive, and 
general. The fact is that sometimes you will have to type the path specification, so one might 
want to consider this when setting things up. Some of you have a path something like: 

“C:\Documents and Settings\userid\My Documents\Biostatistics\Laboratories\Lab 1\Stats” 

That is not a good idea! I would make a “Stats” directory in my home directory: 

Windows: “C:\Documents and Settings\userid\Stats” 
OS X/UNIX: ”/Users/userid/Stats”  

The path to the “Stats’ directory at the root of your home directory can be accessed as: 

Windows: “C:\Documents and Settings\userid\Stats”  
OS X/UNIX: ”~/Stats”  

For the departmental Macs, you should use your network drive so you can access your work 
anywhere. Once you create that directory, you access it  in R 1) by making it your working 
directory or 2) by entering the entire path to a file you want to load. The path for each system is:  

Windows: “H:\Stats”  
OS X/UNIX: ”/Volumes/userid$/Stats”  
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Connecting to your network drive from different computers is quite different for Windows vs. 
OS X/UNIX.  

In Windows,  right click on the "Network Neighborhood" icon on the desktop. Then, left click 
on "Map Network Drive." In the box that pops up, type...  

\\netstore\userid$ 

Substitute your six-letter userid for "userid" in this example. Then, choose a drive letter for your 
mapped drive (we recommend H: since that is the same as in the labs and is most likely free). 
You can choose any drive, but make sure you do not choose a drive letter that is already in 
use. 

In OS X, from Finder choose Go:Connect to Server, then in the box marked “Server Access”, 
type “smb://netstore/userid$” without the quotes. You will get a window asking for your login 
info and the network drive will be mounted as /Volumes/userid$ as explained above.  
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Chapter 1: An introduction to R 
1.1 Getting started  
1.1.1 Logging in and starting R 

R is installed on the computers on the laptop cart, which are running OS X. OS X is actually just 
a graphical shell on the real operating system, which is BSD UNIX. This is a great UNIX that 
has been around in more or less its present form since 1977. The reason that Macs are so stable 
and relatively free of thing like viruses and Trojan horses is because UNIX is a very solid 
operating system.  You can install R on a Windows machine.   Installable binaries can also be 
downloaded for practically any operating system from the R Project (http://www.r-project.org/). 
Here you will also find a wealth of information about how to make things work.  I suggest that 
you take a few minutes and visit this site to see what sorts of things are available. This is an 
important step because R is an Open Source project, a set of statistical analysis tools made by 
and for professionals like you. You will teach yourself to use it and your first attempts will be 
challenging. You have an excellent book on the software and this rich array of online sources. 
Thousands have learned to use this stuff, so you should expect to be successful! At first, you will 
think that having to type in bunches of commands is ridiculous; why not have a bunch of 
pulldown menus and boxes with radio buttons and long lists of selectable options… Well, the 
answer is that menu-driven statistics programs are slow, awkward, and limited. Furthermore, 
many do not allow you to retain a record of what you have done. It may be many weeks or 
months before you have your epiphany that this is, in fact, a better way. Please try to keep the 
faith until you achieve enlightenment! 

First, let’s explore all the different ways there are to run R. First, you can open a terminal 
window. This is the most powerful interface available on your computer and yet some of you 
may have never seen such a feature on a computer screen before. I can assure you that ALL 
computers have one somewhere. The command line interface is one of those things, like 
broccoli, that is really good for you even if you don't enjoy it (yet). Whenever you are operating 
R, ultimately you will be working at a terminal command line, even if it is hidden in the so-
called R-GUI. Let’s start and make a directory called “Stats” in which you can store your work. 
From the prompt type:  

mkdir ~/Stats 

 
The character “~” is UNIX for your home directory. If you type the command 

ls 

 
you will find there is now a directory called “Stats” in your home directory. VERY 
IMPORTANT: UNIX and R are case-sensitive; “Stats” and “stats” are two different things. 
ALWAYS remember this!!! Now change directories to ~/Stats and let’s start up R 

cd ~/Stats 
R 

 
And what you see is something like: 

R : Copyright 2004, The R Foundation for Statistical Computing 
Version 2.0.1  (2004-11-15), ISBN 3-900051-07-0 
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R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for a HTML browser interface to help. 
Type 'q()' to quit R. 
 
[1] "Welcome to R" 
>  

 
That last carat is the interface. Let’s make a data object and do something with it. Type, 
following each command with a carriage return: 

foo <- 1:10 
ls() 
foo 
mean(foo) 

 
You have made an object named “foo” that is listed (ls) in your R workspace. It contains the 
integers 1 to 10 and has a mean of 5.5. Now quit R with: 

q() 

 
AND respond with a “y” when the program asks you if you want to save your workspace. That 
will keep your object “foo” ready for the next time you work in this directory. Now, let’s look at 
what R has done. If you type: 

ls –al 

 
This lists all (a) files in long (l) format.  Hidden files in UNIX-ville have names that start with a 
dot, such as .RData and .RHistory that you see before you. The first of these contains binary 
representations of your data objects, like “foo”, and the second contains a history of the 
commands that you have entered. We will explore this a little more, but all you need to know is 
that these files exist and that you should not mess with them!!!! 

Now, let’s try another way of running R. Use the Finder to navigate to the icon in the dock or in 
directory  /Applications/R and click on the icon or name to open the program. There is that 
command line!!! For now, we will work in this so-called “R-GUI” version. Note that all of this is 
software under continuous development and so things not central to the core (like the little editor 
window built into the GUI) may not always work correctly. The most reliable way to run this 
software is by entering your commands in a text editor, like TextEdit or emacs, and then cutting 
and pasting them into the R console. We will, however, give the little editor window a try in a 
few minutes and hope for the best.  

Go to the Misc menu and select Change Working Directory. Select your “Stats” directory. 
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Note that the directory path in the upper left window changes. Now go to Workspace on the 
menu bar and select Load Workspace. The first time you do this, nothing will be there. Be 
patient. You could also have done this by typing in a pair of commands in the console (see 
below): 

setwd(“~/Stats”) 
load(“.RData”) 

 
If you want to do these automatically every time you start up R, you can use a text editor to make 
a file called “.Rprofile” with those two commands inside it and save it in your home directory. 
Now, whenever you start R, those two commands will execute.  

1.1.2 The R console 

Let's get to know the R command line a bit by doing some arithmetic. Type 1+1, then press 
ENTER. You can use all the standard math operators: +, -, *, t. 

> 1+1 
[1] 2  
> 2+2  
[1] 4  
> 2*8  
[1] 16  
> 16/3 
[1] 5.333333  
> 4^2  
[1] 16  
> 4+2*3  
[1] 10  
> (4+2)*3  
[1] 18  
> 

 
Note that you have command history; by using "↑" repeatedly, you can scroll back though earlier 
commands. Then, using "←" and "→" and backspace, you can edit commands and reenter them 
rather than retype them. You will discover that this is very handy... 

Another thing that is not only handy, but also essential for serious data analysis is the use of 
script files. You can enter all of your commands in a script file, and then simply run them from 
there. You can enter comments (the first character  of a comment will be a # sign, and all of the 
text that follows on that line will be ignored by the command parser. You can use an external 
editor like emacs or TextEdit or (in windoze world, Notepad). The best is emacs (with the Lisp 
extension Emacs Speaks Statistics, or ESS), but, alas, it is a bit hard to use. What the extra effort 
gains you is power and control, but I will leave that for the over-achievers among you to make 
this leap on your own. For now, we will use either the built-in editor in the R GUI or TextEdit, 
the Apple text editor.  

Open a New Document from the file menu or icon. Make sure when you save it that it carries a 
“.r” suffix. It’s not a bad idea to start your file with a comment line explaining what the hell it is. 
I’ve never gotten the hang of doing this, but that does not mean that you should be so slovenly in 
your habits. You can fetch the file “showMarks.r” from Blackboard and put it in your “Stats” 
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directory. Open it up from the File menu… This little file makes a fancy plot of all the plotting 
symbols that are available in R. Don’t expect to understand too much of the script today. Just 
note the comments and then run it by selecting Execute Source on the File menu. Then, 
uncomment the first and last lines that demark the function part and “source” again. Do a ls() 
in the command window. You will see a function entitled “show.marks” that can be run like so: 

>show.marks() 

 
1.1.3 Assigning values and vectors of values to a variable 

R is a full-blown, object oriented programming language in which you create objects by 
assignment of values to variables using the <- ("less than" and "minus") to make a little arrow 
to the left. 

> x <- 5+7  
> x 
[1] 12  
> x <- x*2  
> x 
[1] 24 

 
Here we called the variable x, but we could have called it mary or Bob or whatever. Note that R 
is case-sensitive; Bob and bob are two different variable names. R will let you assign anything to 
any name without the usual declarations and casting required by most programming languages. 
[This can get you into trouble; if you assign the name of an R function to a data object, you will 
not be able to run the function.] Note also that these are not simple variables, but objects and so 
there is more information about the variable than meets the eye. Right now, this probably means 
nothing to you, but later on you will see how cool this really is. In a few words, an object carries 
information about itself (i.e., is it a vector or a matrix; numerical or character; does it have 
special properties, etc.) along with the data it contains. 

Now, let's use some of the functions built into R to create a vector of numbers. The function we 
will use is called c(). All functions in R are followed by parentheses. If the function takes an 
argument, then that argument goes into the parentheses. 

1.1.4 Using built-in functions 
 
> y <- c(1,2,5,5,8,10.3) 
> y 
[1] 1.0 2.0 5.0 5.0 8.0 10.3  
> z <- c(y, 6:8) 
> z 
[1] 1.0 2.0 5.0 5.0 8.0 10.3 6.0 7.0 8.0 
 

The function c() stands for "concatenate". You can find out what R has to say about c() by 
typing  

> help(c) 

 
Note that help() is also a function. Everything in R is a function, even the command to quit the 
program, q(). You can get quite an extensive catalog of information about R by typing 
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help.start(), which we are about to do… 

1.1.5 On-line help 

help.start() opens a browser window with several hyperlinks. The two most useful are 
Packages:Base, which lists all the functions in the basic R package and Search Engine, and 
Keywords, which not only has a search function but also organizes the functions by what kind 
of thing they do. You will become very familiar with these features because they are essential to 
using the software. 

1.1.6 Anatomy of a function 

R has many functions and all work the same way. In general, you would type something like 

> y <- f(x) 

  
where f is the name of the function, x is the argument and y is the function's return value. 
Some functions return value is ignored; we are only interested in some side effect of the 
function. You will gradually begin to see how useful all of this really is. 

1.1.7 Performing mathematical operations on vectors 

Recall our friend y which we designated a vector of values. You can do math and other functions 
on y, in which case the function is applied to each element of y. 

> y+3  
[1) 4.0 5.0 8.0 8.0 11.0 13.3  
> sqrt(y)  
[1] 1.000000 1.414214 2.236068 2.236068 2.828427 3.209361  
> y^0.5 
[1) 1.000000 1.414214 2.236068 2.236068 2.828427 3.209361  

 
See how it works? Each element of y is operated on by the arithmetic function or R function. 
You can assign the output of a function to a variable like this: 

> x <- y+5 
> x 
[1) 6.0 7.0 10.0 10.0 13.0 15.3 

 
You can also apply a function to a single element of a vector by using a subscript that defines its 
place in the vector. So, the fourth element of x is given by 

> x[4] 
[1] 10  
> x[4] <- x[4]-5 
 > x 
[1] 6.0 7.0 10.0 5.0 13.0 15.3 

 
So 5 was subtracted only from the fourth element; the rest remain unchanged. 

Not all mathematical functions act on each element of a vector in the same way. For example, if 
you add two vectors of the same length, you add each element in one vector to the corresponding 
element in the other vector. 

> x 
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[1] 6.0 7.0 10.0 5.0 13.0 15.3  
> y  
[1) 1.0 2.0 5.0 5.0 8.0 10.3  
> x+y  
[1) 7.0 9.0 15.0 10.0 21.0 25.6 

 
Likewise, some functions take a vector argument and return a single value. For instance sum(x) 
adds up all the members of x; mean(x) returns the arithmetic mean (the average) of the values 
in x, etc. 

> sum(x) 
[1] 56.3 
> mean(y) 
[1] 5.216667 
> median(x) 
[1] 8.5 
> var(y) 
[1] 12.36167 
> sd(x) 
[1] 4.118454 
> c(x,y) 
 [1]  6.0  7.0 10.0  5.0 13.0 15.3  1.0  2.0  5.0  5.0  8.0 10.3 
> length(c(x,y)) 
[1] 12 
 

Whoa, take a look at that last one. We gave a function as the argument to another function. You 
can do this! Here, length(x) tells you the number of elements in a vector. 

Some functions take a vector and return a number of values. 

> c(x,y) 
 [1]  6.0  7.0 10.0  5.0 13.0 15.3  1.0  2.0  5.0  5.0  8.0 10.3 
> summary(c(x,y)) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   1.00    5.00    6.50    7.30   10.07   15.30  

 
Other functions, such as date(), take no arguments but still return something. 

 

1.1.8 Matrices from sets of vectors 

Vectors are handy things that you will use a lot, but matrices are even handier. A matrix is a set 
of vectors of equal length. Let's make a matrix from our vectors y and x. One way to make a 
matrix is the matrix() command, but we will get to that later. For now, we will use the 
commands cbind() and rbind(), which take vectors and bind them as columns or rows. 

> z<-rbind(y,x) 
> z 
  [,1] [,2] [,3] [,4] [,5] [,6] 
y    1    2    5    5    8 10.3 
x    6    7   10    5   13 15.3 
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Compare this output with: 

> z2<-cbind(y,x) 
> z2 
        y    x 
[1,]  1.0  6.0 
[2,]  2.0  7.0 
[3,]  5.0 10.0 
[4,]  5.0  5.0 
[5,]  8.0 13.0 
[6,] 10.3 15.3 

 
You can transpose one arrangement into the other with the transpose function, t(); try it out. 

1.1.9 Accessing a member of a matrix 

You can inspect, replace or otherwise torment an individual element of a matrix using subscripts. 

> z2[4, 2] <- 2 
> z2 
        y    x 
[1,]  1.0  6.0 
[2,]  2.0  7.0 
[3,]  5.0 10.0 
[4,]  5.0  2.0 
[5,]  8.0 13.0 
[6,] 10.3 15.3 

 
Note that the matrix subscripts are [row, column]. So z2[4,2] returns the fourth row, second 
column element. 

1.2 Using Data.frames and Matrices 
1.2.1 Getting datasets into R on your computer 

In general, you will not want to type in all your data in R. It is much easier to enter your data in a 
spreadsheet program such as Excel and then, once it is all nicely arranged, import it into R. You 
will usually enter data in a matrix format or something similar. The preferred way of entering 
data for this and most software is called "record format" in which each line of the file consists 
of a single experimental unit and includes columns that uniquely define that unit. We should 
have talked about this in class before the lab. You can also find some sample datasets on the 
Blackboard site for the course. All datasets that we will be using in lab will be posted somewhere 
on that site. You should go to the Blackboard site and save the file "lab1Data.txt" in your “Stats” 
directory. 

1.2.2 Reading in data from a file 

Take a look at the data file using file.show(): 

> file.show("lab1Data.txt") 

 
The data are on geographic variation in wing size of some fruit flies. You will see 3 columns. 
The first column contains latitudes where the flies were originally collected. The second is the 
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mass in micrograms. The third is the wing length in millimeters. Now, bring the file into R using 
the function read.table(): 

> flies<-read.table("lab1Data.txt") 
> flies[1:5,] 
    V1   V2       V3 
1 42.5 1163 2.439745 
2 42.5 1984 2.670173 
3 42.5 1364 2.517653 
4 42.5 1807 2.440977 
5 42.5 1923 2.620276 

 
 

The second command (above) prints out the first five rows of the data matrix. Also, since we put 
the file in our Stats directory, we did not have to give a path name. If the data file were 
elsewhere, we would have had to include the full path within the quotes. Why is the file name in 
quotes? Because it is a name… In R, names of things are always given in double quotes. There is 
a difference between the name of a thing and the thing itself in R, just like in real life... Things 
that are named can include rows, columns, array dimensions, and files. If a name is not in quotes, 
R assumes it is an object and looks for it in its internal database (that you see when you do 
ls()). 

1.2.3 Fields and Records 

Note that R has done some things for you. It has added row numbers (1 to 100) and column 
names (V1, V2, and V3). The V in the column names stands for variable. R assumes the data is 
in record format with records (specific values for each observational unit) as the rows and 
fields (the categories that make up each record) in the columns. Strive to ALWAYS organize 
your data in this way. ALWAYS!!! All statistical software can read in data in the format and, if 
needed, can rearrange the data for other analyses.  

1.2.4. Checking, adding, and changing variable names. 

You can make your data easier to interpret by naming the fields (columns): 

> names(flies)<-c("Lat", "Mass", "WL") 
> flies[1:5,] 
   Lat Mass       WL 
1 42.5 1163 2.439745 
2 42.5 1984 2.670173 
3 42.5 1364 2.517653 
4 42.5 1807 2.440977 
5 42.5 1923 2.620276 
> names(flies) 
[1] "Lat"  "Mass" "WL"   
 

The names() function is very handy. Note that without an assignment, it returns the names of 
the parts of the object. With an assignment, it gives the parts of the object those names. The 
row.names() function works in the same way, but can be used to set the names of the rows.  
 

Although this data looks like a matrix, it actually is something else, called a data.frame. The 
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difference is that a matrix contains only numbers, whereas a data.frame can contain all sorts of 
things, like vectors of characters, factors (we will learn about these later), integers. etc.  

R has a restriction on the contents of a matrix; all members of a matrix must be of the same data 
type. For example, all members of a matrix can be numbers and then the matrix is something we 
do math on. If you put character variables into a numerical matrix, it will cause problems. A 
data.frame allows different columns to be either numbers or characters and sticks them together 
as a list. A data.frame is a special kind of list, since every column has to contain the same 
number of entries and the columns are interpreted as fields in a record format object. You can 
convert a matrix to a data.frame using the as.data.frame() command. 

The summary() command recognizes that an object is a data.frame (which, we shall see, is a list 
of other objects) and behaves accordingly: 

> summary(flies) 
      Lat             Mass            WL        
 Min.   :29.92   Min.   : 960   Min.   :1.769   
 1st Qu.:33.50   1st Qu.:1220   1st Qu.:2.300   
 Median :36.90   Median :1416   Median :2.442   
 Mean   :37.34   Mean   :1459   Mean   :2.427   
 3rd Qu.:41.47   3rd Qu.:1641   3rd Qu.:2.540   
 Max.   :45.58   Max.   :2321   Max.   :2.956   

 
1.2.5 Reading in a data file that already has variable names 

Reading in a data file, then changing the variable names to what you want them to be is a bit of a 
pain. A better idea is to use the field and record names already existing in the data file (which 
you put there with your spreadsheet program, back when you were slogging through your data 
entry). This has been done in the file “flyMorphData.txt”; check it out with 
file.show("flyMorphData.txt"). When we read in data files that have field and record 
numbers, we must tell R that they are there so they get treated as object names and not actual 
values. 

> flies <- read.table("flyMorphData.txt", header = TRUE) 

 
The header = TRUE part says to use the contents of the first row as the variable names. Now 
we've over-written our old flies data.frame with a new one that has field and record names taken 
from the input file. Note that you could abbreviate this command as 

> flies <- read.table("flyMorphData.txt", h = T) 

 
Caution: reading in a data file that has variable names in it without using header = TRUE is bad 
for world peace. The variable names will get read in as the first instance of the variables V1 to 
Vwhatever. That's why it's a good idea to take a peek at the file with file.show() before you go 
and read it in with read.table(). 

1.2.6 Writing data to a file 

Having a matrix, or data.frame in memory is all fine and nice, but there will come a time when 
you want to write that to file on a computer disk, we do this using 

> write.table(flies, file = "fliesBackup.txt") 
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1.2.7 Accessing variables & values 

How do we access individual values in our data.frame? We get a vector from a data.frame  by 
using the object name of the field after the data.frame call, like dataframe$field. This only works 
with named columns of data.frames, not named rows. First, we'll pull the vector WL out of the 
data.frame flies. 

> flies$WL 
  [1] 2.439745 2.670173 2.517653 2.440977 2.620276 2.391737 2.366697 
  [8] 2.489048 2.384631 2.720184 2.489427 2.473351 2.956061 2.588285 
 [15] 2.490778 2.348635 2.165348 2.372839 2.453797 2.748762 2.629671 
 [22] 2.605635 2.611270 2.612734 2.549242 2.494998 2.372424 2.335559 
 [29] 2.408355 2.277581 2.478463 2.566370 2.502521 2.529653 2.444478 
 [36] 2.176167 2.280786 2.304591 2.489972 2.303416 2.564374 2.554732 
 [43] 2.533908 1.768510 2.446277 2.412644 2.468278 2.446483 2.264424 
 [50] 2.430433 2.580144 2.592125 2.620905 2.399342 2.549363 2.349513 
 [57] 2.230550 2.365217 2.363947 2.353798 2.427069 2.265223 2.578547 
 [64] 2.472370 2.544211 2.282334 2.295082 2.260989 2.254802 2.325847 
 [71] 2.505479 2.541356 2.539530 2.593197 2.480369 2.295774 2.442349 
 [78] 2.235268 2.283314 2.287451 2.560324 2.437437 2.387715 2.533673 
 [85] 2.547056 2.231033 2.194699 2.211211 2.301685 2.293640 2.551094 
 [92] 2.518607 2.504326 2.273015 2.453151 2.285521 2.280741 2.344468 
 [99] 2.242543 2.288888 
> > mean(flies$WL) 
[1] 2.427486 
> summary(flies$WL) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.769   2.300   2.442   2.427   2.540   2.956  

 
You can get the value of any element in a data.frame)as dataframe$field[record] or 
data.frame[record, field name] or data.frame[record, field number]: 

> flies$WL [3]  
[1] 2.517653 
> flies[3, "WL"]  
[1] 2.517653 
> flies[3,3]  
[1] 2.517653 

 
Three different ways to get the same thing... Hmmm. This is one of the things that seems a little 
bizarre at first, but you will find it is often very useful. It also hints at the fact that this 
subscripting stuff is very flexible. For example, you can also get the values of one variable as a 
function of other variables by logical subscripting. [Note: this is one of the most important and 
powerful concepts to wrap your brain around to become truly proficient in using R. It is also, 
unfortunately, one of the most difficult...]. So, suppose we wanted to see all of the wing lengths 
of flies that were heavier than average. 

> thold<-mean(flies$Mass) 
> thold 
[1] 1459.42 
> flies$WL[flies$Mass>thold] 
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 [1] 2.670173 2.440977 2.620276 2.489427 2.956061 2.588285 2.490778 
 [8] 2.748762 2.629671 2.605635 2.611270 2.612734 2.549242 2.478463 
[15] 2.502521 2.529653 2.444478 2.304591 2.564374 2.554732 1.768510 
[22] 2.446277 2.580144 2.592125 2.620905 2.399342 2.549363 2.353798 
[29] 2.427069 2.265223 2.578547 2.472370 2.544211 2.505479 2.541356 
[36] 2.539530 2.593197 2.480369 2.560324 2.437437 2.387715 2.547056 
[43] 2.551094 2.504326 2.273015 2.453151 

 
1.2.8 Adding variables to an existing data.frame 

We can make vectors from variables in a data.frame the same way that we made vectors when 
we performed simple mathematical operations upon vectors. For instance: condition, the measure 
of health of a fly is 

! 

Mass
3

WL . Let's calculate it and add the variable Cond back to our 
data.frame. 

> Cond<-(flies$Mass^(1/3))/flies$WL  
> Cond 
  [1] 4.310379 4.705884 4.404962 4.989867 4.745836 4.573687 4.387966 
  [8] 4.228629 4.447599 4.134948 4.913424 4.534785 3.951688 4.618318 
 [15] 4.601930 4.450477 4.787411 4.359609 4.502966 4.140271 4.470777 
 [22] 4.692582 4.345418 4.722954 4.837148 4.404400 4.545414 4.396954 
 [29] 4.412383 4.331282 4.945925 4.414372 4.687308 4.544210 5.416336 
 [36] 4.666127 4.809576 4.969309 4.219797 4.840408 4.431941 4.647717 
 [43] 4.326941 7.228341 4.704238 4.317174 4.555882 4.378330 4.872303 
 [50] 4.275438 4.967145 4.727338 4.803189 4.780473 4.689742 4.773804 
 [57] 4.478712 4.679673 4.556859 4.828433 4.762120 5.056795 4.576192 
 [64] 4.644388 4.754498 4.406169 4.522192 4.802177 4.863771 4.597915 
 [71] 4.604107 4.845248 4.952954 4.547568 4.944806 4.815292 4.549640 
 [78] 4.659757 4.735328 4.617037 4.655963 4.767320 4.904551 4.425772 
 [85] 4.646825 4.674104 4.837896 4.659889 4.597555 4.644620 4.609428 
 [92] 4.477367 4.969008 5.426908 4.627614 4.791111 4.744418 4.721090 
 [99] 4.942935 4.583911 
 
> flies<-cbind(flies, Cond) 
> summary(flies) 
      Lat             Mass            WL             Cond       
 Min.   :29.92   Min.   : 960   Min.   :1.769   Min.   :3.952   
 1st Qu.:33.50   1st Qu.:1220   1st Qu.:2.300   1st Qu.:4.476   
 Median :36.90   Median :1416   Median :2.442   Median :4.647   
 Mean   :37.34   Mean   :1459   Mean   :2.427   Mean   :4.665   
 3rd Qu.:41.47   3rd Qu.:1641   3rd Qu.:2.540   3rd Qu.:4.794   
 Max.   :45.58   Max.   :2321   Max.   :2.956   Max.   :7.228   
> 
 

You could have done the same thing in one step if you were feeling cocky: 
 
> flies$Cond<-(flies$Mass^(1/3))/flies$WL 

 

1.3 Clean living with R 
1.3.1 Listing and deleting objects in memory and attaching matrices 
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Phew! What hard work! You know, we can cut down a bit on some of this typing. Typically, one 
works on one dataset at a time. In this case, it's all in the flies data.frame. Instead of doing all 
this flies$Mass, we can access a field in a dataset by it's name (just Mass) if we tell R to look 
in flies for other variables first, before looking at other directories. You can see the list of 
places that are being searched with search(). When you use a variable, R goes looking for it in 
those places. The ls() command will list all the stuff in the first thing on the search path, the 
“.GlobalEnv”, and the rm() command will remove objects listed in the parentheses. The useful 
but dangerous rm(list=ls()) will delete everything from the Global Environment!. 

> search() 
[1] ".GlobalEnv"        "package:methods"   "package:stats"     
[4] "package:graphics"  "package:grDevices" "package:utils"     
[7] "package:datasets"  "Autoloads"         "package:base"      
> attach(flies) 
> summary(Mass) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    960    1220    1417    1459    1641    2321  
 

When you attach a data.frame it reads in the variables that were in that data.frame when you 
attached it. [NOTE: Personally, I think it is generally a poor practice to attach your data.frames 
and operate on them. I prefer to use the name$variable syntax, even though it means more 
typing.] 

> detach(2) 
> summary(Mass) 
Error in summary(Mass) : Object "Mass" not found 
> search() 
[1] ".GlobalEnv"        "package:methods"   "package:stats"     
[4] "package:graphics"  "package:grDevices" "package:utils"     
[7] "package:datasets"  "Autoloads"         "package:base"  

 

 

 
1.3.2 Simple data snooping 
 
OK, so we can print the flies dataset to the 
screen, but what do we really get out of that? 
Data snooping is so much easier if we do it 
graphically. Everyone's favorite univariate 
data snooping tool is the histogram, followed 
by the scatterplot-- the standard bivariate 
data snooping tool. 

> hist( flies$Cond) 

 
A histogram shows you the distribution of 
values for the variable you are looking at. So, 
for instance in our histogram of condition, 
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we see that there is one value greater than 7, while there are the rest fall between 3.5 and 5.5.  

> plot(flies$Mass, flies$WL)  

 
And for the scatterplot, there is a single fly 
with a wing length less than 1.8. Those points 
may be outliers; we need to see if they 
represent the same individual and we may 
decide to throw them out.  

With you scatterplot visible, we are going to 
use a function, identify(), that takes the set 
of x, y values you have plotted and makes the 
scatterplot interactive. First, issue the 
command: 

> identify(flies$Mass, flies$WL) 

 
and click on whatever points you are 
interested in. If the sound is on, there is some 
kind of audio indication that you have clicked. 
When you hit escape, the row numbers of the 
points are delivered. A more clever way is to 
use the function as a logical subscript to the flies data object and just get the rows of interest. 

> flies[identify(flies$Mass, flies$WL),] 
     Lat Mass       WL     Cond 
13 36.62 1594 2.956061 3.951688 
44 32.00 2089 1.768510 7.228341 

 
Look at that! Row 44 is the outlier with the high condition score. I think those small wings 
probably represent a measurement or data entry error and I’m going to through that one out and 
redo my plots: 

> tmp1<-flies[-44,] 
> hist(tmp1$Cont) 
> plot(tmp1$Mass, tmp1$WL) 

 
I’ll let you do this and take a look… 

1.4 Additional tricks, tips, and traps 

1.4.1 Reading in data from a spreadsheet 

You may already have your data entered into a spreadsheet, and want to read it into R. It is 
critical that the data be in a nice matrix-y format, no little notes typed in there off in column AE, 
Your spreadsheet should be in good "records and fields" format. It may be necessary to clean it 
up a bit, or make a cleaned up copy and save that. Each column must contain values for a 
variable, and each row a case. The first row should contain the names of the variables in each 
column. If data is missing, you must enter NA (no quotes; R sees capital N and capital A as 
missing data and makes the right decisions about what to do with it). Within Excel (or whatever 
your favorite spreadsheet is) save the files as CSV (comma-delimited) type or tab delimited and 
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remember where you saved them (or better yet move them to a directory where you'll be doing 
your work). 

The real advantage of tab-delimited files is what you cannot do in them: there can be no white 
space within each data entry, only between the fields on your observations. No two-word column 
headings, no short notes to yourself about why something is screwed up, etc. White space in 
column headings is particularly adept at making your life miserable in R. So, think of short, 
descriptive names for you data columns. If you need feel that you simply must name a column 
“Fecundity at age 3”, then try “FecundityAge3” or “Fecundity.Age.3”. I would, however choose 
something like “Fec.3” or “F3” because they are easier to type… 

Within R, you will read in your text file into memory where the file win be held as a data.frame 
which we must give a name. In the following example we'll read in the file from your home 
directory "~" and make a data frame called "my.nutty.data". First we will do this as a CSV file, 
then as tab delimited. Note that in both cases, you need to save the file in the right format in 
Excel. So, first let’s open “acornsData.xls” in Excel and see what we have. You will note there 
are five columns, two with text entries and three with numbers. You can change the column 
names if you wish. And you should scan through to make sure there are no empty cells. Do “save 
as” to your home directory (“~”) and save the file first as a CSV, and then as a tab-delimited text.  
Now, read them into R; first the CSV version: 

> my.nutty.data<-read.csv("~/acornsData.csv") 
> summary(my.nutty.data) 
                Species          Region       Range         
 Quercus_agrifolia  : 1   Atlantic  :28   Min.   :   13.0   
 Quercus_alba       : 1   California:11   1st Qu.:  827.5   
 Quercus_bicolor    : 1                   Median : 5328.0   
 Quercus_chapmanii  : 1                   Mean   : 7882.6   
 Quercus_chrysolepis: 1                   3rd Qu.:11924.5   
 Quercus_coccinea   : 1                   Max.   :28389.0   
 (Other)            :33       
                               
   AcornSize        TreeHeight    
 Min.   : 0.300   Min.   : 0.30   
 1st Qu.: 1.100   1st Qu.:10.00   
 Median : 1.900   Median :18.00   
 Mean   : 3.400   Mean   :17.34   
 3rd Qu.: 4.625   3rd Qu.:24.00   
 Max.   :17.100   Max.   :30.00   
 NA's   : 1.000 

  
Now, just to write over the object with the tab-delimited text version: 
> my.nutty.data<-read.table("~/acornsData.txt", h=T) 
 
Note also what happened with the character data! The numerical variables are summarized as 
means, medians, quartiles, and ranges, whereas the character data are counted by type. 
read.table(), in fact, does something tricky here because it makes those character strings into 
factors, which are going to be very important later on in this course. For now, a factor just looks 
like a bunch of character strings that can be grouped; in fact, it is a vector of numbers (“dummy 
variables”) with a set of labels. More later… 
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1.5 Handing in Lab Exercises 
Here's the routine for handing in lab exercises. We're going to cut and paste your work into a log 
file, which you will then email to me. We're going to follow this procedure: 

1. Kill R then re-start it new. 

2. On the first line of the new R console enter the line" # My name is Bubba" (feel free to replace 
the token "Bubba" with your actual name). 

3. Then execute the date() command. 

4. Then do whatever you have to do to get the lab exercises done 

5. Then, when you're done, mouse up to the Edit menu item, and choose the Select all 
command. Now put the mouse back in the blued-out window containing your work, and cmd- 
click to get a pop-up menu, select the Copy option. If the Copy option is grayed out, go back to 
the Select all option and make the R Console blue again, then try to Copy. Once you've done 
that you've got all that work in the cut and paste buffer 

6. Open TextEdit and select the Paste option from the Edit menu. You should see all your work 
in the text area. 

7. Mouse up to TextEdit’s File menu, click on it, and select the Save As option. Enter the 
filename "BIOL425yourlastnameLab1.txt" and save in your “~/Stats” directory. 

8. Email that file as an attachment to me at gwgilc@wm.edu 
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Lab 1 Exercises  
 

1. Kill R and start it up again  

2. Make a vector called odd out of the first six odd numbers and another called prime out of the 
first six prime numbers.  

3. Make these two vectors into a matrix called my.numbers (where odd and prime are columns), 
print it to the screen.  

4. Make a vector call diff of the difference between prime and odd (subtract odd from prime, not 
the other way around). 

5. Add the diff vector onto my.numbers as a new column. Rename all the columns with 
capitalized names.  

6. Read in the data file “pheasantsData.txt” (obtain from Blackboard) and determine the mean 
value and the variance of Tarsus and the median value of Wt.  

7. Change the names of Tarsus and Wt to TL and Mass  

8. Make histograms of TL and of Mass. Any outliers? 

9. Graph a scatterplot of TL against Mass; any outliers? 

10. OPTIONAL (but recommended for the wise among you…): do the exercises at the end of 
Dalgaard, Chapter 1.
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Chapter 2 Probability and Distributions 
 
2.1 Probability 
 
2.1.1 Two independent events  
 
Female Túngara frogs prefer male Túngara frogs that add an extra "chuck" syllable onto the end 
of their courtship calls. Not all males add this extra syllable because frog-eating bats also prefer 
calling males who add the "chuck" syllable, which makes being sexy kind of dangerous for the 
males (Ryan, 1985).  
 
How do we figure out that that the females prefer that extra syllable? Put a female between two 
speakers and play calls to her whine + chuck in one speaker, just whine in the other, and see 
which speaker she heads for. We have to test a bunch of females to make sure we don't base our 
conclusions on just one odd-ball (if you used only one, we call that pseudoreplication: why is 
this such a bad thing that we’ve given it a BIG, BAD name?), and we'll have to make sure we 
don't always play the whine + chuck call out of the same speaker in case one speaker is somehow 
sexier than the other (maybe there's some bat-like scent from the researcher that is stronger 
towards one speaker). If there were a preference for one speaker over the other, it would bias the 
results if we did not randomize which call came out of which speaker.  
 
Many people test each female twice, with the stimuli swapped for the two trials, then count only 
those trials in which females make unanimous choices. If the female prefers stimuli “A” in the 
left speaker such that she'll go left on the first trial with probability 0.82, and she prefers stimuli 
“A” in the right speaker such that she'll go right on the second trial with probability 0.75, what's 
the probability that she chooses “A” both times?  
 
One way to think about this is to think of probabilities as area in a square. Let p1 be the 
probability that the female chooses “A” in the first trial, and p2 be the probability she chooses 
“A” in the second trial.  
 
We make the horizontal axis the outcome of the first trial, and the vertical axis the outcome of 
the second. The total area of the square is 1, and the rectangles within the square cover each of 
the possible outcomes. In the bottom left corner is the case when she chooses “A” in both trials, 
the rectangle above it is the cage in which she chooses “A” in the first trial and “B” in the 
second. Bottom right is when she chooses “B” in the first trial and ”A” in the second, above that 
is when she chooses “B” in both trials.  
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Now it's pretty much duck soup to figure 
out the probability that she chooses “A” 
in both trials. It's 0.82 x 0.75, which is 
0.615. Note that the probability of a 
unanimous choice is lower than the 
lowest probability of any single trial 
coming out with “A”. If you were using a 
unanimous choice protocol to estimate 
the strength of a preference for “chucks” 
you would have to correct for this.  
 
 
 
 
 
 
 
 
 
 
 
2.1.2 Two events, more than two outcomes each  
 
You can use the unit square to deal with more than two outcomes, as long as you have two 
events. For instance, we could have an outcome in the Túngara frog example in which females 
don't make a choice between "A" and “B”, but just sit there in the middle and don't move.  
 
Here's a sketch of a unit square with 14 
total outcomes from two possible events 
taken from some notes on a game 
theoretical model of threat display use in 
mantis shrimp (Adams & Mesterton-
Gibbons, 1995). Here each of two shrimp 
has a strength of somewhere between 0 
and 1 (uniformly distributed). Each 
shrimp’s strength score lies somewhere 
with respect to two thresholds, called I and 
J for the threatening player, and K and L 
for the receiver of the threat1, In addition 
to each of these players falling into the 
weak (less than I or K); strong (greater 
than J or L) or middling (between I & J, or 
between K & L), they are also either 
stronger or weaker than their opponent.  

                                                
1 It is proven in the model that I<K<L<J 

0 1 

1
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2.1.3 More than two independent events  
 
The unit square is a really handy thing as long as you have two events. You can think about unit 
cubes if you have three events, but you're going to hurt your head soon after that. 
 
One handy way to deal with more than two events is to think of forking trees. Let's say we're 
tracing the probability of some cichlid fish winning or losing a staged encounter (that's a fight) 
against a succession of opponents. Fight outcome in most cichlids is strongly determined by size; 
the first fight is against an opponent of equal size, the second against an opponent that is 10% 
smaller, and the third against an opponent that is 10% larger.  
 

 
 
 
The probabilities of each of the outcomes are given below.  
 

Outcome Probability 
a x1 × x2 × x3 
b x1 × x2 × (1 – x3) 
c x1 × (1 – x2) × x3 
d x1 × (1-x2) × (1-x3) 
e (1-x1) × x2 × x3 
f (1-x1) × x2 × (1-x3) 
g (1-x1) × (1-x2) × x3 
h (1-x1) × (1-x2) × (1-x3) 

 
 
 

a b c d e f g h 

(x3)       (1 - x3) (x3)       (1 - x3) (x3)       (1 - x3) (x3)       (1 - x3) 

(x2)   (1 - x2) (x2)   (1 - x2) 

(x1) (1 - x1) 
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2.1.4 Two non-independent events  
 

Silly example  
My buddy Joe owes me five bucks. The chance that he will pay me back today is 1/10∗. In 
Australia, it occasionally happens that a combination of bizarre weather events causes it to rain 
toads; the percent probability of toad precipitation today is 5%∗∗. But Joe, being the kind of guy 
he is, would probably pay me back if it were to rain toads. This may be either because he has 
some sort of deep spiritual connection to the earth and whatever freak event makes it rain toads 
also makes Joe’s pay-back-debts neurons to fire, or it may be because if it were to rain toads it 
would spook him so much that he'd pay back his debts on the off chance that he might have to do 
some fast talking to St. Peter in the near future and doesn't need the karmic debt piled on top of 
the financial one.  
Anyway, what is the probability of being paid back and raining toads, assuming that these are 
independent events? 
 

Biology example  
The probability of a cichlid winning a fight against an evenly matched opponent is thought to 
increase or decrease as past victories and defeats influence its piscine self-esteem. If this were 
true then there would be different value’s for x2 depending on whether we followed the left or 
right fork for the first fight.  
 

2.1.5 Binomial probability  
 
So I head on off to the tropical fish store to get me a bunch of shell dwelling cichlids. 
Neolamprologous meleasgris are my favorite just now, and I'm really psyched to get them 
breeding. The drag is that they are quite difficult to sex, especially when they’re as young as they 
typically are when people sell them. Assuming that there are an equal number of males and 
females, if I buy five fish, what are the odds that I'll have at least one male and one female?  
As we saw in lecture, the general equation for this is the binomial probability [Note: I have 
switched notation to the way choose() in R works. Deal with it…] 
 

 
(2.1)  

 
Where n is the total number of fish I've got, k is the number of one sex or the other (we'll count 
females; it doesn't really matter which one we count), and p is the probability that any randomly 
chosen fish is a female (or whichever fish we're counting), and we've decided to assume that p = 
                                                
∗ Obviously made up number, the actual probability that Joe pays me back on any given day is so 
small you need an electron microscope to see it 
∗∗ Another obviously bogus number, the probability that it rains toads in Australia is bigger than 
the probability that it rains toads anywhere else, but it's still nearly as small as Joe paying me 
back the five bucks. 

! 

p
n

k

" 

# 
$ 
% 

& 
' =

n

k

" 

# 
$ 
% 

& 
' p

k
(1( p)n(k



BIOL425/680 Spring 2005 Lab Session 2 
 

 27 

0.5. The binomial coefficient,     , is equal to          , and gives us the number of ways we can 
order k events out of a total of n trials. Let's say I have n fish in a tank, k of them are male, and I 
dip net them out one at a time, there are      orders of male-female-female-male etc. that I can 
take them out in.  

I could figure out what the odds are that I get each of 1,2,3 and 4 females, then add the 
odds together, but it will be easier to just figure out what the odds of 0 and 5 females are and 
then subtract them from one. So the probability that I get all males is  

 
         (2.2) 
 
 
and the probability that I get all females is  
 
    (2.3) 
 
A bit of algebra will convince you that these are the same thing, and the answer is something 
we'll figure out in R.  
 
> choose(5,0)*0.5^0*(1-0.5)^(5-0) 
[1] 0.03125 
> choose(5,5)*0.5^5*(1-0.5)^(5-5) 
[1] 0.03125 
> #So, the probability of at least one male and one female is: 
> 1-(choose(5,0)*0.5^0*(1-0.5)^(5-0))-(choose(5,5)*0.5^5*(1-0.5)^(5-
5)) 
[1] 0.9375 
 

 
I think N. meleagris are polygynous (males keep harems). I don't really remember, but I know 
the closely related N. ocellatus are. Really, I'd like to have two males and three females, just so I 
get to see the maximum range of social behavior once they get all settled in. What're the odds of 
that?  
 
> choose(5,3)*0.5^3*(1-0.5)^(5-3) 
[1] 0.3125 
 

almost one in three, good odds.  
UMMMM ...DOES EVERYONE UNDERSTAND WHAT’S GOING ON HERE? What 

we've calculated above is,     , the number of ways you can order three females out of five fish 
(when there are three females), and then the probability of getting three females 0.53 and two 
males (1- 0.5)5-3 (in that order). We multiply the probability of getting them in one order by the 
number of ways we can re-order them… GET IT? 
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2.2 Distributions  

2.2.1 Distributions and sample sizes  
 
OK, so now we're going to look at the effect of sample size on the fit of distributions. runif(n) 
will return n uniformly distributed random numbers between 0 and 1. But first, a word or two 
about graphics devices. You will notice that all computer programs generate either text or 
graphics, but not both. Like in Word, if you want to draw a picture, it calls another program 
(currently called Microsoft Word Picture) that opens up a graphics window where you can draw 
stuff. There is a fundamental difference between a graphics program and a text program, so 
guess what? When you want to open up a graphics window in R, you need to call a graphics 
device. If you open help.start(), select “Search Engine & Keywords”, then scroll down to 
Graphics: device. Click and ponder the list. If you are using a Mac, what you want is x11(), 
which is the standard UNIX graphics engine. BUT you have to start the X11 program first…it’s 
the big X icon in your dock. There is another Mac only device called quartz() that is visually a 
little nicer, but you won’t find it on a Linux box and you cannot run it from a terminal window. 
The quartz() engine is already running. If you are a Windows user, there is a windows() 
device, whose engine is also already running. Any of these commands opens a blank graphics 
window, ready to receive your commands. You will note a couple of others, like pdf() and 
postscript() (and wmf() in Windows) that write graphics to files rather than on-screen 
windows. More on these later, or just follow the help files for instructions. 
 
The first couple of lines will set up a graphics window with four panels, then fill them in by rows 
with each call of hist(x): 
 
> X11() ## or quartz() [OS X only] or windows() for you Windoze types 
> par(mfrow=c(2,2)) 
> x<-runif(50) 
> hist(x) 
> x<-runif(100) 
> hist(x) 
> x<-runif(1000) 
> hist(x) 
> x<-runif(10000) 
> hist(x) 
> 

Notice how increasing sample size makes for a better agreement to our expectation of a uniform 
distribution?  
 
You can get rid of all the graphics windows with the command graphics.off() or you can 
get rid of a specific one with  dev.off(x)where x is the number of the graphics device (usually 
given in the window frame).  
 
A better example is the normal distribution. rnorm(n) will return n normally distributed 
numbers, from a default distribution of  µ = 0, σ = 1. So, we should expect a nice symmetrical 
bell-curve with mean of zero and standard deviation equal to one.  
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> x<-rnorm(100) 
> hist(x) 
> dev.off(2) 
null device  
          1  
> hist(rnorm(100)) 
> 

 
Set up a graphics window with four panels and plot some histograms this way. Then, increase the 
sample size to ten thousand, hist(rnorm(10000)) . Now, hist() may change the number of 
bins on you, so we'll fix that to some constant amount.  
 
> hist(rnorm(10000),breaks=15)  
> hist(rnorm(100),breaks=15)  

 
Try that at a bunch of sample sizes and see how it changes.  
 
Not only does the general shape of these curves change with sample sizes, but also it can get 
really difficult to see changes in the mean. I have written a little function to show this; we'll read 
it in using the source() function. We use source() to load R programs: code that we have 
written ahead of time that we want to execute all at once.  
 
> source("lab2.r")  

 
Now that we have loaded this file, we can see what is there with the ls()function. You will note 
a pair of functions called norm() and norm1(). These draw a histogram of n random numbers 
drawn from a normal distribution with default values of µ = 0 and σ = 1.0, and it put in a title 
with the mean and standard deviation on top. The function then draws a curve on top of this 
distribution, the curve has defaults of µ = 0 and σ  = 1.0. You can see the arguments norm() 
takes with  
  
> args(norm) 
function (N = 1000, xbar = 0, s = 1, t = paste("xbar=", xbar,  
    ", s=", s, ", n=", n, sep = ""), breaks = "Sturges")  
NULL 
> 
 
You can provide your own arguments instead of the defaults. For example, try 
 
> norm(N=100, xbar=10, s=1.25, breaks=seq(3,18, by=1)) 

 
Let’s explore a bit about how sample size affects the distribution of data. Use the parameters 
above, except do several norm() plots with sample sizes varying from 10 to ? 
 
What do you see? 
 
Now, pick a sample size (n = 1000 is a good choice) and vary the standard deviation from 0.1 to 
10 (or more…) Check out how the shape of the distribution changes. 
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We will now use norm1() , which is the same is norm() except that the red line is always at µ 
= 0.5. We are going to use this to demonstrate a point. Look at  
 
> norm1(N=50, xbar=0.5, s=0.25) 

 
Do a bunch (9 or 10) of these in one graphics window to get a feel for how well the histogram 
fits the theoretical distribution  [HINT: try for (i in 1:9) norm1(xbar=0.5)]. Then, let’s 
see what a little different mean looks like: 
 
> norm1(N=50, xbar=0.4, s=0.25) 
> 

 
Do a bunch (9 or 10) of these in a new graphics window as well so you can compare the two sets 
of results. How confident are you that the xbar = 0.5 samples are from the normal distribution 
with µ = 0.5 and σ = 0.25 that is represented by the red curve? How sure are you that the xbar = 
0.4 ones are not? This is what parametric statistics is all about: estimating your confidence that a 
sample is drawn from some ideal distribution.  
 
How many data points to we need to comfortably be able to discriminate a difference in means 
of about one-half a standard deviation (about 20% here)? Run norm1() a bunch more times for 
means of 0.5 and 0.4 and standard deviation of 0.25 while you increase the sample size until the 
histogram is clearly not fitting the curve. This is what separates good scientists from the rest. 
They KNOW how many data points they are going to need to show a difference between two 
groups before they start collecting their data. If you are going to ask a granting agency for 
$100,000+ a year to do some science, you had really better think a bit about what statistics you 
are going to use BEFORE you start collecting data. You must know how many data points you 
are going to need to figure out your budget.  
 

2.2.2 Shapes of distributions  
 
We've seen how we get uniform random numbers from runif() and random normal numbers 
from rnorm() .We can get random binomial numbers from rbinom(), and random poisson 
numbers from rpois(). W will compare the shapes of each of these distributions, for 100 
random numbers: a) uniformly distributed between 0 and 20, b) normally distributed with a mean 
of 10 and a standard deviation of 2.5, c) randomly chosen from sets of 20 trials with a probability 
of success of 0.5 on each trial, d) from a poison distribution with mean and standard deviation of 
10.  
 
Note the use of par(mfrow=c(*,*)), which puts more than one graph on a single page. 
Entering par(mfrow=c(2,3)) will put the next six graphs on one page, in two rows, and three 
columns. Entering par(mfrow=c(1,1)) will return us to one graph per page.  
 
> par(mfrow=c(2,2))   
> uniform <- runif(100,0,20)  



BIOL425/680 Spring 2005 Lab Session 2 
 

 31 

> normal <- rnorm(100,mean=10,sd=2.5) 
> binomial <- rbinom(100,20,0.5) 
> poisson <- rpois(100,10)  
> par(mfrow=c(2,2))   
> hist(uniform, breaks=seq(0,20, by=2)) 
> hist(normal, breaks=seq(0,20, by=2))  
> hist(binomial, breaks=seq(0,20, by=2)) 
> hist(poisson, breaks=seq(0,20, by=2)) 
> #NOTE: If you get an error, just try it again… 

 
They all look pretty much identical, except for uniform. Play around with the sample sizes, and 
other parameters. FIND SOME PARAMETER VALUES THAT MAKE POISSON, LOOK 
POISSON!  
 

2.2.3  Conditional treatment of data  
 
Let's read in the file fightsData.txt. We're going to work on this dataset for a while, so go 
ahead and attach() it, and then take a look at what the data looks like.  
 
> fights <- read.table("fightsData.txt", h=T)  
> attach(fights)  
> fights  
   Outcome     Mass   Length 
1        0 27.66351 12.58606 
2        0 26.35791 13.07044 
3        0 24.85713 12.81085 
4        0 26.39602 12.67843 
5        0 25.01095 13.08503 
6        0 23.42920 12.69274 
…etc. 
 
Note that we have three variable names, Outcome, Mass, and Length. Length and Mass are pretty 
self-explanatory, Outcome = 1 means that lizard won the fight, and Outcome= O means it lost 
the fight. Outcome is what we call a "grouping variable" or (in linear modeling) a factor.  
 
We can extract a subset of lengths and weights as a function of outcome like this:  
 
> Length[Outcome==1] 
 [1]  9.216727  9.330348  9.105261  8.910005  9.454688  8.399771  
9.657784 
 [8]  8.824902  8.441046  9.530615  9.489111  8.840671  9.199745 
10.050274 
[15]  9.114106  8.909267  8.785606  9.080923  9.190376  7.995264 
> Mass[Outcome==0] 
 [1] 23.71702 23.18016 24.80350 24.68897 25.14323 22.99181 23.31032 
22.89915 
 [9] 23.18077 24.01036 23.80334 23.05075 22.30164 24.33814 25.39867 
25.71428 
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[17] 23.67321 23.88689 24.33612 25.28089 
> mean(Length[Outcome==1]) 
[1] 9.076324 
> mean(Mass[Outcome==0]) 
[1] 23.98546 
> 
 
> par(mfrow=c(2,1))  
> hist(Mass[Outcome==0]) 
> hist(Mass[Outcome==1]) 
> #Let's fix that range and scale... 
> range(Mass) 
[1] 22.30164 29.41494 
> hist(Mass[Outcome==0],xlim=c(22,30)) 
> hist(Mass[Outcome==1],xlim=c(22,30)) 
> #Still does not look quite right! 
> hist(Mass[Outcome==0],breaks=seq(22,30,by=1)) 
> hist(Mass[Outcome==1], breaks=seq(22,30,by=1)) 
> #back to one plot per graphics device 
> par(mfrow=c(1,1)) 
> 

 
Hmm, how many winners are bigger than the average loser? Let's use the median loser instead of 
the average...  
 
> median(Mass[Outcome==0]) 
[1] 23.84512 
> Mass[Outcome==1] 
 [1] 26.78643 27.42959 26.09994 24.47815 27.82018 26.06541 25.13097 
25.80624 
 [9] 22.45817 27.59822 26.85577 25.33209 27.04367 27.40893 26.51934 
24.66177 
[17] 23.63874 24.42922 26.71114 29.41494 
> Mass[Outcome==1]>median(Mass[Outcome==0]) 
 [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  
TRUE 
[13]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE 
> sum(Mass[Outcome==1]>median(Mass[Outcome==0])) 
[1] 18 
> 
sum(Mass[Outcome==1]>median(Mass[Outcome==0]))/length(Mass[Outcome==0]
) 
[1] 0.9 

> 

2.2.4  Review of the distribution functions in R  
 
Ok, now to finish up, you should work through Section 2.5, pp. 49-55 in Dalgaard. This provides 
an overview of several of the functions we have used as well as some we have not.  
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2.4 Exercises  
 
Email me your results; make sure your name or userid appears in the file name! 
 
1. Many species of lizards have multiple male types. Before they reach adulthood they develop 
one color of throat patch and become aggressive territorial animals, or they develop another 
color and become relatively less aggressive non-territory holders. Throat color predicts adult 
behavior perfectly (Thompson & Moore, 1991; Sinervo & Lively, 1996; Rand, 1990). Urosaurus 
ornatus is one of these lizard species with multiple male phenotypes. A proportion x of males are 
of the blue throat type, and a proportion 1 - x are of the orange type. In addition, some 
proportion,  y of all lizards are male. So, what's the probability that any given egg will turn out to 
be a blue-throated male when it grows up?  
 
2. So what about if I'd only bought four Neolamprologous meleagris? What would be the odds 
that I would have at least one breeding pair? What would the odds be that I had two breeding 
pairs?  
 
3. The probability of a cichlid winning a fight against an equally matched opponent is 0.5, 
against an opponent 10% smaller is 0.90, and an opponent 10% larger is 10%. Fill in the 
numerical values for the table in section 2.1.3. Winning a fight increases the probability of 
winning the next fight by 5%) while loosing has the opposite effect. What is the probability of 
outcomes d and e in 2.1.3.  
 
4. The cichlid Gyanocytta gutatum is the only cichlid native the United States. On a field trip to 
Texas, you find a fair number of breeding pairs in a pond (you can tell those breeding because 
they have really pale front ends and darker rear halves). Read tx_cichlData.txt into a data.frame 
called cichlids. There are two variables in the file, Length and Breeding. Cichlids in breeding 
color have Breeding==1 non-breeders have Breeding==0.  

(a) Describe the shape of the distribution of lengths amongst breeding and non- breeding 
animals.  
(b) Find the average size of breeders and non-breeders,  
(c) Find the total number of breeders and non-breeders,  
(d) How many non-brooders are larger than the median breeder?  
(e) Are breeders bigger than non-breeders? Does being big mean you're a breeder?  

 
5. Load the data file distsData.txt. Find the mean, median, and standard deviation for each of the 
nine columns in the file. Plot histograms of each variable. Verbally describe and compare each 
distribution.  
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Chapter 3 

Hypothesis testing and confidence intervals, part 1 
 

3.1 Missing data: what comes after “^&%#” 
 
Green anoles change color: one minute they're green, the next they're brown. Lizards that "seem 
happy" are more likely to be green, and green lizards are more likely to attack than brown ones. 
Many lizards use color as an aid to thermoregulation, but anoles are thought (by some at least) to 
match their color to the background.  
 
So, I weighed and measured, a bunch of lizards (to get condition, an index of "happiness"). Then, 
the lizards were left to hang out for a day before their color was recorded and their temperature 
taken. Taking their temperature is a bit of a stunt; if you were to pick them up that would change 
their temperature. So their temperature was taken using a ridiculously expensive (and totally 
uninsured) thermal imaging camera. The camera sees different intensities of infrared radiation, 
different temperatures, as different colors. Obviously, this camera cannot see through glass, 
because it would just see the temperature of the glass. This is a problem when you are working 
with any animal that is usually kept in cages. No problem; you can just life the lid off the cage 
for a second, point the camera at it, then put the lid back on, no problem. So, while I was aiming 
the ridiculously expensive (and totally uninsured) thermal imaging camera at one of the lizards, 
the animal seized the opportunity to escape and was off.  
 
I lost the temperature datum for that lizard. So, what am I gonna do? I could throw away all the 
data for that lizard, but I'd really like to keep the condition and color data, because that's still 
good. What we've got is a classic example of a missing value. In R we mark a missing value with 
NA.  
 
> tmp1<-read.table("thermoData.txt", h=T) 
> attach(tmp1) 
> Cond<-(Wt^(1/3))/SVL 
> tmp1<-cbind(tmp1, Cond) 
> detach(tmp1) 
> attach(tmp1) 
> Wt 
 [1] 6.3 6.0 6.0 6.7 5.1 3.3 6.0 5.3 5.6 4.8 5.4 4.2 5.5 5.4 4.5 4.9 
2.8 
> Temp 
 [1] 34.00 32.28 33.61 33.61    NA 34.00 35.28 36.50 34.00 33.61 32.50 
33.22 
[13] 33.28 31.28 32.00 37.00 32.22 
> plot(Wt, Temp) 
> plot(Col, Wt)  #I don’t think you’ve seen this kind of plot yet...  
> plot(Cond, Temp) 
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When we plot () a dataset containing a missing value, that data point is usually dropped [Note: 
the precise behavior depends on what kind of data contains the missing value. If it is simply 
numerical data, it is dropped. If it is a factor (more about these later), you will generate an 
error.]. Strange things can happen when we summarize datasets containing missing values, be-  
cause adding a missing value to a missing value produces a missing value, which can have 
cascading effects. [Note also that plot() produces different kinds of plot for different kinds of 
data and that IT KNOWS what kind of data you have given it. THIS is what an object-oriented 
program does. The objects in your .RData file are not just flat files of rows and columns; they 
also contain “metadata” about what sorts of things lurk within that tell functions what they can 
do with this sort of object. The plot of color versus weight produces a box plot because color is a 
meriistic variable.] Now, carrying on with some arithmetic: 
 
> sum(Temp) 
[1] NA 
> mean(Temp) 
[1] NA 
> sd(Temp) 
Error in var(x, na.rm = na.rm) : missing observations in cov/cor 
> sum(Temp, na.rm=T) 
[1] 538.39 
> mean(Temp, na.rm=T) 
[1] 33.64937 
> sd(Temp, na.rm=T) 
[1] 1.555200 
> detach(tmp1) 
> 

  
So, missing values are important! You MUST encode them as NA. Blanks are not allowed and 
setting them to some value (like zero) is simply incorrect. R (and most stats programs) can deal 
with missing data, but it is your responsibility to find out how they deal with it! 

3.2 Testing for normality 
 
The vast majority of parametric statistics is based on the assumption that continuous variables 
are normally distributed. This makes it important that we know whether our data are normally 
distributed.  
 
OK, let’s load the lizard dataset, and eyeball those some histograms. Do whatever you have to do 
to get a graphics window on your computer.  
 
> lizards<-read.table("lizardData.txt", h=T) 
> par(mfrow=c(1,2)) 
> hist(lizards$Mass, breaks=10) 
> hist(lizards$SVL, breaks=10) 

 
So which one is closest to normal'? The best way to eyeball for normality is using a quantile-
quantile plot, qqnorm(). A qqnorm() plot compares a test distribution to a theoretical normal 
distribution (with the test mean and standard deviation rescaled to 0 and 1) by examining which 
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values delimit equal proportions of the two distributions. For example, at what value is 1% of the 
curve below for a) the test distribution, and b) the normal distribution. Those two numbers are a 
single (x, y) point on the q-q graph. What values on the two curves are the 2% cut off point? 
Those two numbers are another (x, y) pair. Plot a bunch of those points and you have a quantile-
quantile plot. The choice of which axis to put the test distribution values on, and which to put the 
normal distribution ones on is a bit contentious. R does things one way, other folks (like Sokal 
and Rohlf) do it the other (R’s default way is, to my mind, better…).  
 
Whichever way you wind up plotting them, if the test distribution is normal, then the result will 
be a bunch of points that fall out on a diagonal line. Skews will produce qqnorm() plots that 
curve either up or downwards, and kurtosis problems will produce sigmoidal qqnorm() plots. 
Deviation from normality is easier to see when the line a perfect normal would produce is 
graphed onto the plot, using qqline() , which draws a straight line through the 25% and 75% 
quartiles.  
 
> par(mfrow=c(1,2), pty="s") #s for square; it's easier to see... 
> qqnorm(lizards$Mass) 
> qqline(lizards$Mass) 
> qqnorm(lizards$SVL) 
> qqline(lizards$SVL) 

 
Snout-vent length appears to be closer to a normal distribution than does mass.  
 

3.3 Standardizing data 
 
So, Peter Hurd, who provided much of the material for this manual, got this idea that the ability 
to operate microwave ovens, VCRs, etc. is inversely related to intelligence. What with IQ testing 
being such a lucrative field, he has decided to patent the Hurd Intelligence Testing Protocol-
HITP.  (At first he thought he would see how many Nalgene® bottles subjects exploded while 
making 100 lattes in the microwave; this was subsequently ruled out due to budgetary constraints 
and excess caffination). He then devised a second test: how long it takes to set the clock on the 
VCR, in seconds. He tested thirty faculty members at the University of Texas, Austin; the data is 
in clockingData.txt.  
 
> ciq<-read.table("clockingData.txt", h=T) 
> names(ciq) 
[1] "Time" 
> mean(ciq$Time) 
[1] 84.70266 
> sd(ciq$Time) 
[1] 9.323854 
> 

 
Well, we need the inverse, right (faster VCR operation = higher intelligence), so take the inverse. 
 
> ciq$Inv.time<-1/ciq$Time 
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So, IQs are defined as having a mean of 100 and a standard deviation of 10. In order to get IQ 
values out of Hurd’s test2, I have to jerk the distribution around until I get those values. So, how 
am I going to do this? Well, I will start by figuring out how far each data point is from the 
expected value; this distance is called the deviate. In this case our expectation is the average, 
and so we'll calculate the deviate, di for each value Yi as,  
 

! 

di = Yi " y  
 
> ciq$D<-ciq$Inv.time-mean(ciq$Inv.time) 
> sum(ciq$D) 
> sum(ciq$D) 
[1] 3.122502e-17 
> mean(ciq$D) 
[1] 1.040834e-18 
> 
 

The sum of all deviates should be zero, but there will be some rounding errors. It is always a 
good idea to check to see that the sum of all deviates is zero. OK, now we know how far each 
datum is from the mean, we can rescale this distance in units of standard deviations. Thus, 
instead of having deviations in time units away from the mean,  we will have them in standard 
deviations. Once we have that, we can multiply that by ten (because IQ scores are defined as 
having a standard deviation of ten points) and add 100 (because IQ scores have a mean of 100). 
 
> ciq$Dev<-ciq$D/sd(ciq$Inv.time) 
> ciq$IQ.dev<-ciq$Dev*10 
> ciq$IQ<-ciq$IQ.dev+100 
> par(mfrow=c(1,1)) 
> hist(ciq$IQ, breaks=10, main="IQ by HITP") 
> mean(ciq$IQ) 
[1] 100 
> sd(ciq$IQ) 
[1] 10 
> write.table(ciq, "IQ-clokData.txt", row=F, quote=F) 
> 

Well, that wasn't so bad. We could just as easily converted our distribution of IQ’s to a standard 
normal distribution (mean = 0, sd = 1). Standard normals are exceedingly useful things; a 
standard normal value for a data point is often called its z-score, something we shall investigate 
in greater detail in Chapter 4.  

3.4   Not A Number?!  
 
When analyzing dichotomous mate choice data (you know when you have a female in the middle 
between two alternative males, and you see which one she prefers) there are somewhere between 
half a dozen and a dozen different ways to analyze the data, and no strong consensus on which is 
best. In one popular variety, you divide the tank into three zones, and measure the time the 

                                                
2 So, do you think this is really any more stupid than any other IQ test? 
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female spends at each end (near each of the males) out of five minutes. Then express the time 
spent at each end as a ratio of the time in either end (so you throwaway the time she spends in 
the middle portion of the tank, where you say she is making no decision).  
 

 
Let A be the time (in seconds) spent at the end of the tank where stimulus "A" is, and B be the 
time spent at the end of the tank with stimulus "B" .The preference for stimulus "A" is then A/(A 
+ B).  
 
> A<- c(0,242,157,164,45,0,134) 
> B <- c(267,31,98,32,23,0,17) 
> pref.a<-A/(A+B) 
> pref.a 
[1] 0.0000000 0.8864469 0.6156863 0.8367347 0.6617647       NaN 
0.8874172 
> is.nan(pref.a) 
[1] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE 
> C<-replace(pref.a, is.nan(pref.a), NA) 
> C 
[1] 0.0000000 0.8864469 0.6156863 0.8367347 0.6617647        NA 
0.8874172 
> 

3.5 Hypothesis Testing 
As part of a series of secret experiments, the American military intentionally released a large 
cloud of radioactive iodine from the Hanford nuclear processing plant in 1949 [NOTE: this is 
fact, not fiction.]. The baseline childhood (under 20 years old) leukemia rate is 806 per million 
per year. Let's say we inspect hospital records for 1954 from an area "downwind" from the 
Hanford. We find 97 cases of leukemia diagnosed that year. Our investigations lead us to believe 
that the hospitals we examined served 100,000 households with children under 20. Based on the 
baseline, we were expecting 81 cases and we found 97, what are the odds on that?  
 
Our null hypothesis is that these 97 cases come from a population in which each child has an 
80.6 in a hundred thousand chance of coming down with leukemia. Our alternative hypothesis is 
that this population has an elevated chance of developing leukemia. We're dealing with some 
pretty large numbers here, and some pretty small probabilities.  
 
Before long we could go crazy counting the zeros as we're typing. There is a better way: 
scientific notation, also known as the exponential form. Ten thousand is 10000 in decimal 

choose 
A 

choose 
B 

no 
choice 
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notation, and 1e4 (that's 1 x 104) in scientific notation. The number of households we're dealing 
with is one hundred thousand, or 1e5.  
 
The probability of contracting leukemia is 806 per million, that's  
 
> 806/1000000 
[1] 0.000806 

 
or  
 
> 806/1e6 
[1] 8.06e-04 

 
and 0.000806 in decimal notation is 8.06e-4 in scientific notation {i.e. 8.06 * 10-4).  
Ok, back to probability. Let p be the probability of a child contracting leukemia. The probability 
of n events in k trials, when the probability of an event happening in any given trial is p is given 
by  
 

! 

p(n,k) | p =
n

k

" 

# 
$ 
% 

& 
' p

n
(1( p)k(n  (3.1)  

 
R simplifies this for us into dbinom(n  k, p) [NOTE: d… here stands for density: the height 
of the probability distribution at the specified point. All of the distribution functions have a d… 
version in R. For example, dnorm(x, mean, sd) is the density of the normal at Yi=x]. For 
instance the probability of getting exactly 80, 90 or 97 cases of leukemia in a population of 100k 
people, if each has an 806 in a million chance of getting it, is  
 
> dbinom(80, 100000, 806/1000000) 
[1] 0.04447474 
> dbinom(80, 1e5, 806/1e6) 
[1] 0.04445879 
> dbinom(90, 1e5, 806/1e6) 
[1] 0.02477896 
> dbinom(97, 1e5, 806/1e6) 
[1] 0.008456372 
> 

 
That's not so handy. Let's graph a range of possible outcomes, from no leukemia cases to 150 
cases (out of a possible, though highly improbable 100,000). We want dbinom(x, 100000, 
806/1000000) for each x between 0 and 150. Entering a:b will give us a vector of all whole 
numbers from a to b.  
 
>0:15 
 [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
> x<-0:150 
> dbinom(x, 1e5, 806/1e6) 
  [1] 9.588496e-36 7.734562e-34 3.119512e-32 8.387681e-31 1.691430e-29 
  [6] 2.728676e-28 3.668295e-27 4.226933e-26 4.261772e-25 3.819426e-24 
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 [11] 3.080664e-23 2.258881e-22 1.518272e-21 9.419749e-21 5.426753e-20 
 [16] 2.917919e-19 1.470867e-18 6.978147e-18 3.126648e-17 1.327188e-16 
 [21] 5.351865e-16 2.055343e-15 7.534519e-15 2.641906e-14 8.877516e-14 
 [26] 2.863732e-13 8.882511e-13 2.653043e-12 7.641070e-12 2.124808e-11 

etc. 
 
Now we can graph the probabilities of each number of leukemia cases per 100000.  
 
> plot(x, dbinom(x, 1e5, 
806/1e6), type="h")  
> 

 
 
Note that we stick the argument 
type=”h" so that we get 
histogram like bars in our graph 
instead of the scatterplot style dots 
that plot() defaults to.  
 
 



BIOL425/680 Spring 2005 Lab Session 3 
 

 41 

More useful to us is the probability of getting x or more leukemia cases. This cumulative 
probability will allow us to calculate the probability that such an extreme number of cases would 
be seen if the null hypothesis were true. pbinom() will give us the cumulative probability, but 
defaults to give us the lower end of the distribution. This means that pbinom(n,k,p) will give 
us the probability of' n or fewer samples out of k.  
 
> pbinom(0, 1e5, 806/1e6)  
[1] 9.588496e-36 
> pbinom(30, 1e5, 
806/1e6) 
[1] 8.995832e-11 
> pbinom(50, 1e5, 
806/1e6) 
[1] 0.0001691626 
> pbinom(70, 1e5, 
806/1e6) 
[1] 0.1289692 
> pbinom(80, 1e5, 
806/1e6) 
[1] 0.5029632 
> pbinom(97, 1e5, 
806/1e6) 
[1] 0.9671568 
> plot(x, pbinom(x, 1e5, 
806/1e6), type="h") 
>  
 

 
We can however, get the 
probability that there are n or more cases out of k by adding an argument, lower.tail=FALSE, 
specifying that it is the upper tail that we are interested in.  
 
> pbinom(80, 1e5, 806/1e6, 
lower.tail=F) 
[1] 0.4970368 
> pbinom(97, 1e5, 806/1e6, 
lower.tail=F) 
[1] 0.03284318 
> plot(x, pbinom(x, 1e5, 
806/1e6, lower.tail=F), 
type="h") 
> 
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3.5.1 Confidence Intervals of the Null  
 
We have our null hypothesis that, given the known leukemia rate among the general population 
is 806/1,000,000, the incidence of childhood leukemia among the households downwind from 
Hanford is not significantly different from the incidence in the general population. We can use 
the  probability distribution for our sample of 100k households. Now, we've set a threshold for 
rejecting the null hypothesis or α = 0.05, and we have made this a conservative two-tailed test. 
[SO, why is this conservative…?]  
 
What number of leukemia cases, would we have to see before we would reject the null? We want 
the number of leukemia cases below which 0.025 of the area under the curve lies, and above 
which 0.975 of the area lies.  
 
> pbinom(70, 1e5, 806/1e6) 
[1] 0.1289692 
> pbinom(60, 1e5, 806/1e6) 
[1] 0.01004683 
> pbinom(65, 1e5, 806/1e6) 
[1] 0.04267252 
> pbinom(64, 1e5, 806/1e6) 
[1] 0.03287932 
> pbinom(63, 1e5, 806/1e6) 
[1] 0.02498289 
So, on the low end we would need to see 63 or fewer. As you might guess, there is a better way 
to do this, but you have to READ THE HELP FILE and THINK to use it. Note that the quantile 
[and, just like d… is the density and p… is the probability, q… is the quantile function for a 
given pdf) is the smallest value of x such that F(x) >= P, where F is the distribution function. 
 
> qbinom(0.025, 1e5, 806/1e6) 
[1] 64 
> qbinom(0.025, 1e5, 806/1e6, lower.tail=F) 
[1] 99 
So we need a number of cases less than 64 or greater than 99 to reject the null. Let’s graph the 
two regions of the distribution: 
 
par(mfrow=c(1,2), pty="s") 
y<-pbinom(x, 1e5, 806/1e6) 
dy<-dbinom(x, 1e5, 806/1e6) 
plot(x[y>=0.025 & y<=0.975], dy[y>=0.025 & y<=0.975], type="h", 
     xlim=range(x), ylim=range(dy)) 
abline(v=97, col="red") 
plot(x[y<0.025 | y>0.975], dy[y<0.025 | y>0.975], type="h", 
     xlim=range(x), ylim=range(dy)) 
abline(v=97, col="red") 
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          Fail to reject null hypothesis       Reject the null hypothesis  

 
Below 64 cases (out of a hundred thousand possible cases) we will reject the null and say that 
there are fewer children with new cases of leukemia than we expected there to be. Above 99 
cases, we will reject the null and say that there are more cases than we expect under the null 
hypothesis. We found 97, so we fail to reject the null, if our alternative hypothesis was two 
tailed. If we were only considering the possibility that there were more cases of leukemia among 
down-winders, then what would we conclude? Please do this and graph the acceptance and 
rejection regions as above! 
 
What we have just done, tested a number of binary outcomes against a hypothesized probability 
of a single trial coming out one way or the other, is called a binomial test. While it is not used 
very often in biology, it's a good intro example to how all other hypothesis testing works. Figure 
out how likely it is that some pattern we've seen is not different from a random process (our null 
hypothesis), and if that probability is less than α we reject the null.  
 

3.5.2 Another lizard behavior example  
 
Anolis lizards use a display called the headbob, in which they nod at each other. Anolis 
carolinensis use three different distinct rhythms of headbob, called "A", "B" and "C" (DeCourcy 
& Jenssen, 1994). By and large, 83% of all headbobs are of type "C". The last headbob a lizard 
used an attacks was a "C" in 12/27 cases. Twelve out of 27 is much lower than 0.83, so  are 
lizards signaling an impending attack by using different headbobs?  
 
If headbob type does not provide information about impending attack, as some people believe 
ought to be the case (e.g. Caryl, 1979)- then the chance of a type “C” headbob used immediately 
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before an attack should be 0.83. This, then, is our null hypothesis: 12 of 27 cases is a random 
outcome, where the probability that any given headbob is of type "C" is 0.83.  
 
> data.frame(N=0:27, P=round(pbinom(0:27, 27, 0.83),4)) 
    N      P 
1   0 0.0000 
2   1 0.0000 
3   2 0.0000 
4   3 0.0000 
5   4 0.0000 
6   5 0.0000 
7   6 0.0000 
8   7 0.0000 
9   8 0.0000 
10  9 0.0000 
11 10 0.0000 
12 11 0.0000 
13 12 0.0000 
14 13 0.0000 
15 14 0.0002 
16 15 0.0008 
17 16 0.0031 
18 17 0.0102 
19 18 0.0297 
20 19 0.0746 
21 20 0.1623 
22 21 0.3051 
23 22 0.4952 
24 23 0.6970 
25 24 0.8611 
26 25 0.9573 
27 26 0.9935 
28 27 1.0000 
> 

 
So, if we're using a two tailed test with α = 0.05, then 17 or fewer type "C" headbobs out of 27 is 
statistically different from 83%. A one tailed test would require only 18 or fewer type "C" bobs 
out of 27 to be significant.  
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3.6 Exercises  
 
1. Test the normality of the nine distributions in distsData.txt, describe how different deviations 

from non-normality affect the qqnorm plots.  
 
2. Are the IQ scores from the HITP tests normally distributed? Compare the distributions of 

Time, Inv.time, D, Dev, IQ.dev and IQ. Discuss the problems with sampling bias in the 
assignment of IQ scores to the faculty members tested.  

 
3. Convert SVL and Mass scores from lizardData.txt to standard normal (aka z-scores), 

bind them to the data.frame, and then get the values for the 22nd lizard. 
 
4. The data file fights2Data.txt contains the results of 19 staged contests between lizards. 

For each contest the winner's weight is given by W. wt and the loser's weight is L.wt .  
 

(a) How many are won by the heavier lizard? How many by the lighter lizard?  
(b) Our null hypothesis is that size does not affect contest outcome, how likely is each 

possible arrangement of outcomes with respect to weight asymmetry (e.g. all winners 
heavier, an but one winner heavier, all but two winners heavier etc.) under the null 
hypothesis? Hint: the number of contests with known winner/loser weight differences is 
less than 19 (because either a clear winner could not be determined, or the two lizards 
weighed the same), use that smaller number. Be certain that you can answer this using the 
photocopied binomial probability look-up tables as well as with R!  

(c) For each of the values above, calculate the cumulative probability from the value to the 
nearest tail. We want the area under the curve, from the value out to the extreme, which is 
the probability that the observed score is that extreme or more extreme. 

(d)  How likely is the data under the null hypothesis? Is it a statistically significant result 
with a one-tailed test? How about with a two tailed test? How would you summarize the 
effects of weight on fight outcome in lizards?  

 
5. bobsData.txt lists the number of each type of headbob used by 27 different lizards.  
 

(a) Make histograms of the number of "A " and "B" headbobs used; do they look different?  
(b) Maybe some lizards just do a lot more headbobs in general, and this makes for the 

difference we see between " A " and "B" bobs. For each lizard find the proportion of all 
headbobs that are of type "A" and "B".  
      propA = bobs$A/(bobs$A + bobs$B + bobs$C)  
Hint: you get an infinite number (NaN) because you have divided by zero, Do blat<-
replace(blat, is.nan(blat),NA) to replace all NaN with NA.  

(c) Compare the means of the proportions for all lizards; do they seem different?  
(d) Make histogram of the ratio do they look different?  
(e) How many standard deviations of "B" proportion is the" A " mean away from the "B" 

mean?  
(f) How many standard deviations of "A" proportion is the "A" mean away from the "B" 

mean?  
(g) Do these two distributions seem the same? What, if anything makes it hard to say?
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Chapter 4: The normal distribution and the t-test 
 

4.1 Analysis of continuous data 
 
Last chapter we used binomial tables to look up how likely a binary outcome was, given a 
hypothesized probability of a single outcome. What are we to do with non-binary data? A 
parable: I knew a guy called "Mike" back in high school, who had a really simple way of 
analyzing the world around him. Mike's life consisted of a series of pronouncements upon every 
event in his life, dividing each into the categories of "Sucks" and "Rules"3. Unless you plan on 
winding up your days muttering "forks rule…, batteries suck…, ice cubes suck…, light bulbs 
rule…" at the dinner table, you will have to deal with a non-binary environment. Life is not 
usually made up of binary outcomes.  
 
If it's not binary, a good alternative guess is that it's normal. You should be able to explain 
why… Our handy-dandy normal tables provide us with a way to examine the relative 
probabilities of continuously varying data. All you need to know to describe a normal 
distribution is its mean and variance4. The downside to normal data is that there are just so many 
possible combinations of possible means and variances that having a table for each is just not 
going to work. This is why we've been converting things to standard normals.  
 

4.2  t-test: the big idea 
Imagine that we have two normally distributed datasets, drug and control, and we want to know 
whether or not they have different means. The way we'll put a number on how different two 
datasets are is to compare the differences between their means. The figure below (Fig. 4.1) 

 
shows two examples, both have the same difference between their means, but the curves on the 

                                                
3 It was totally impossible to predict which category Mike would group anything in, one day the saucepan would 
"rule" and the salt shaker would "suck" , then next day was a totally different kettle of fish. 
4 Of course, you can substitute standard deviation for the variance. If there is a third number you'd be interested in 
knowing about an approximately normally distributed dataset it would be the sample size, but sample size doesn’t  
pertain to the normal probability distribution 

Fig. 4.1 
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left are obviously more different than the ones on the right. The difference between the two 
graphs is the variation within each of the groups.  
 
We can quantify the difference between two normal distributions by expressing the magnitude of 
the difference between the means in units of variance of the curves (Fig. 4.2)- note the 
assumption that the groups have the same variance.  
 
 

This all makes sense, but we can apply a bit of a refinement. Rather than using the variance or 
standard deviations of the two distributions, we’ll use the standard error of the mean. The SEM 
measures the variance expected in the mean of n samples, given their summed squared 
deviances. Why is this different from the variance? Well, imagine that you measure the snout-to-
vent length of a randomly selected lizard in a population with a mean SVL of 7.55cm, and a 
standard deviation of 1.5cm. Given what we know about z-scores we know well how likely each 
specific SVL is.  
 
 
 
 
However likely an SVL of x is, given one randomly 
selected lizard, it is more likely that the mean of two 
animals is closer to the mean than x  
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Fig. 4.3 
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This idea is graphed in the top two graphs on the previous page (Fig. 4.3). On the right, the 
difference between the two means, in units of scatter within each group, is larger.  
 

4.2.1 Example by hand  
 
The data file collinsiaData.txt contains a fairly large dataset on morphological measures of 
Collinsia torreyi "Baby blue lips" plants, censused from quadrats in the "Rabbit Meadow" site at 
8000' in the Sierra Nevada. From this dataset we can calculate the mean and standard deviation 
of height and width of these plants: 5.81 ± 3.022 and 4.75 ± 3.119 respectively). One plant has a 
height of 10.43 and width of 8.54, another has height of 9.31 and a width of 10.61. How unlikely 
are such values to be chosen at random from our dataset5?  
 
First we determine how many standard deviations these numbers are from the mean. To do this 
we find out how far our data point, yi, is from the mean, 

! 

y . This value, yi – 

! 

y , is a difference in 
data units. We then divide this value by how many data units there are in a standard deviation,   
(yi – 

! 

y )/sd(y), which gives us how far our data point is from the mean in units of standard 
deviations.  
 

zi= (yi -

! 

y )/sd(y) 
z1= (10.43 – 5.81)/3.022 
z2= (8.54 – 4.75)/3.119 
z3= (9.31 – 5.81)/3.022 
z4= (10.61 – 4.75)/3.119 

 
We now have a z-score for each of our four data points. We find out the area under the normal 
curve by looking it up in the tables. The table gives the area under the curve, to the far end of the 
distribution for z (one-tailed test). This number doubled gives the area under the curve out to 
both ends for z and -z (two-tailed test).  
 
The probability of getting a height greater than 10.43, (z-score 1.52) is about 0.0643, (note: one-
tailed). The probability of getting a width more extreme than 8.54 (z-score=1.22) is about 
0.2224. What are the corresponding numbers for the second plant?  

4.2.2 The normal distribution in R  
 
Last chapter we saw how we could get the probability density, and cumulative density for the 
binomial distribution and use them to test hypotheses. We had previously standardized normal 
data so that we could get z scores for a given data-point to compare where it stood in relation to 
the rest of the data in units of standard deviations.  
 
We can get z scores, and cumulative probabilities of z scores for normally distributed data just as 
easily as we got similar numbers for binomial data. Lets take a closer look at our Texas cichlid 
data, in particular we are interested in the length of the breeders.  

                                                
5 Note that we assume the data are normally distributed. 
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> cichlids<-read.table("tx_cichlData.txt", 
h=T) 
> attach(cichlids) 
> names(cichlids) 
[1] "Breeding" "Length"  
> b.l<-Length[Breeding==1] 
> summary(b.l) 
 Min. 1st Qu. Median Mean 3rd Qu. Max.  
 4.900 5.100 5.200 5.174 5.200 5.400  
> sd(b.l) 
[1] 0.1121406 
> x<-seq(4.5,6,by=0.001) 
> #first, the non-cumulative probability 
distribution 
> plot(x, dnorm(x, mean=mean(b.l), 
sd=sd(b.l)), type="h") 
> #then, the cumulative probability 
distribution 
> plot(x, pnorm(x, mean=mean(b.l), 
sd=sd(b.l)), type="h") 
> detach(cichlids) 

 
 
dnorm(x,µ,σ) will return the probability density of x 
given a normal distribution with mean µ, and standard 
deviation σ , and pnorm(x,µ,σ) will return the 
cumulative probability. So how likely is a fish smaller than 
our smallest breeder,  given what we know about breeders?  
 
 
> pnorm(min(b.l), mean(b.l), sd(b.l)) 
[1] 0.007275573 

 
 

4.2.3 Solving the Collinsia example using R  
 
Note that we didn't really have to get the z scores, we can just use the data, the mean and 
standard deviation and R does the rest.  
 
> tmp1<-read.table("collinsiaData.txt", h=T) 
> names(tmp1) 
[1] "Height" "Width"  
> attach(tmp1) 
> mean(Height) 
[1] NA 
> mean.h<-mean(Height, na.rm=T) 
> sd.h<-sd(Height, na.rm=T) 
> mean.w<-mean(Width, na.rm=T) 
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> sd.w<-sd(Width, na.rm=T) 
> detach(tmp1) 
> z1<-(10.43-mean.h)/sd.h 
> z2<-(8.54-mean.w)/sd.w 
> z3<-(9.31-mean.h)/sd.h 
> z4<-(10.61-mean.w)/sd.w 
> z1; z2; z3; z4 
[1] 1.596077 
[1] 1.117413 
[1] 1.217657 
[1] 1.743684 
> # the probability of a height < 10.43 
> pnorm(10.43, mean.h, sd.h, lower=T) 
[1] 0.9447642 
> pnorm(z1, 0, 1) 
[1] 0.9447642 
> # the probability of a height > 10.43 
> pnorm(10.43, mean.h, sd.h, lower=F) 
[1] 0.05523577 
> pnorm(z1, lower=F) 
[1] 0.05523577 
> # the probability of a width < 8.54 
> pnorm(8.54, mean.w, sd.w, lower=T) 
[1] 0.868091 
> pnorm(z2) 
[1] 0.868091 

4.3 One-sample t-test 
 
Here is a set of scores for psychomotor development for low birth weight infants taken from 
Nurcombe et al. (1984). The test used to get these scores, the Psychomotor Development Index, 
has an expected mean of 100.  
 
{96, 125, 89, 127, 102, 112, 120, 108, 92, 120, 104, 89, 92, 89, 120, 96, 104, 89, 104, 92, 124, 
96, 108, 86, 100, 92, 98, 117, 112, 86, 116, 89, 120, 92, 83, 108, 108, 92, 120, 102, 100, 112, 
100, 124, 89, 124, 102, 102, 116, 96, 95, 100, 120, 98, 108, 126} 
 
There are 56 scores, they have a mean of 104.125, and a standard deviation of 12.58. Is this 
result significantly different from 100?  
 
So, what do we need to know to calculate our single sample t-test? We want to know how many 
standard deviations 104.125 is away from 100. The trick is that we have to estimate the size of 
the standard deviation of the true population from the standard deviation of our sub-sample. 
There is a difference in how far a single value is expected to be from a mean with a given 
variance, and how far a sub-sample is expected to be from a mean with the same variance. The 
latter is the standard error of the mean, and it is obviously going to be affected by how many data 
points we have in our sample. The standard error of the mean, 

! 

sy , is  
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n

s

n

s
s
y

==
2

 

 
So, we calculate our t (which is just like a z except that we're using 

y
s  in place of s for the 

difference between the mean of our data and the expected population mean:  
 

! 

t =
y "µ

sy 

=
104.125 "100

12.58 56
= 2.454  

 
 
Then we look up that value in our handy-dandy table of critical t values. To do this we need to 
know how many degrees of freedom we have. The degrees of freedom we have here is n -1, or 
55. So our critical value of t for a two tailed test is somewhere in the range of 2.005-2.003. So, 
are we over that value? What does that mean?  
 

4.3.1 The example in R  

Here is the long, painful, way to calculate the previous example in R.  
 
> tmp1<-scan("lbw_pdiData.txt") 
Read 56 items 
> length(tmp1) 
[1] 56 
> mean(tmp1) 
[1] 104.125 
> sd(tmp1) 
[1] 12.58435 
> (mean(tmp1)-100)/(sd(tmp1)/sqrt(length(tmp1))) 
[1] 2.452941 

 
R has already got a one-sample t-test function, built into the library of classical statistical tests. 
 
> t.test(tmp1, mu=100) 
 
 One Sample t-test 
 
data: tmp1  
t = 2.4529, df = 55, p-value = 0.01737 
alternative hypothesis: true mean is not equal to 100  
95 percent confidence interval: 
 100.7549 107.4951  
sample estimates: 
mean of x  
 104.125 
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SWISH! and that, ladies and gentlemen, is why people use computers. 
 
 

4.4 Two sample t-test 

 
It's pretty rare indeed that you will use a one sample t-test as we almost never know what the 
population mean really is. More likely you will be comparing two samples.  
 
4.4.1 Two sample t-test by hand  
 
A dozen female rats are fed a high protein diet, and another 7 are fed a low protein diet (Snedcor 
& Cochran, 1980). The weight gain in (g) for the two diets is:  
 
> high.p <- c(134,146,104,119,124,161,107,83,113,129,97,123)  
> low.p <- c(70,118,101,85,107,132,94)  

 
Our thinking is the same as for the one sample, except that this time we are estimating both 
means and variances. We are going to calculate an approximate ratio of size of difference 
between the two population means, to the standard deviations of those sub-populations.  
 

! 

t =
y 
1
" y 

2

sy 
1
"y 

2

 

 
We've gone and jerked around our estimate of the variance again (the denominator); our standard 
error of the mean is now a weighted average of the standard errors of the means of each sub-
sample.  

! 

sy 
1
"y 

2

=
s
2

1

n
1

+
s
2

2

n
2

 

 
So knowing that  
 
> mean(high.p) 
[1] 120 
> mean(low.p) 
[1] 101 
> var(high.p) 
[1] 457.4545 
> var(low.p) 
[1] 425.3333 
> length(high.p) 
[1] 12 
> length(low.p) 
[1] 7 
> 
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and our degrees of freedom is nl + n2 -2 we should have no problem finding our t score and our p 
values from the tables. Is it significant?  
 
 

4.4.2 Two sample t-test in R  
 
We'll solve the rat example three times over. First we'll do a two-tailed test. After the two- tailed 
test we'll do two one-tailed tests, the first will test the alternative hypothesis that rats on the high 
protein diet gain more weight than those on the low protein diet, then we'll do the opposite one-
tailed test, that rats on the low protein diet gain more weight than those on the high protein diet.  
 
> t.test(high.p, low.p, alternative="two.sided") 
 
 Welch Two Sample t-test 
 
data: high.p and low.p  
t = 1.9107, df = 13.082, p-value = 0.0782 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -2.469073 40.469073  
sample estimates: 
mean of x mean of y  
 120 101  
 
> t.test(high.p, low.p, alternative="greater") 
 
 Welch Two Sample t-test 
 
data: high.p and low.p  
t = 1.9107, df = 13.082, p-value = 0.0391 
alternative hypothesis: true difference in means is greater than 0  
95 percent confidence interval: 
 1.398247 Inf  
sample estimates: 
mean of x mean of y  
 120 101  
 
> t.test(high.p, low.p, alternative="less") 
 
 Welch Two Sample t-test 
 
data: high.p and low.p  
t = 1.9107, df = 13.082, p-value = 0.9609 
alternative hypothesis: true difference in means is less than 0  
95 percent confidence interval: 
 -Inf 36.60175  
sample estimates: 
mean of x mean of y  
 120 101  
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Yowsirrrr! 
 
One of the big assumptions underlying a two-sample t-test is that the two samples come from 
populations with equal variance. We test this assumption by comparing the ratio of the variances 
between the two groups (larger ratio over smaller ratio).  
 

! 

F =
s
2

x

s
2
y

 

where x is whichever variable has the highest variance, and y is whichever variable has the 
smallest variance.  
 
The degrees of freedom for this F-test are df = Nx- 1, Ny -1. So, if we have the two treatments 
from our rat study, Nx = 12, var(X) = 457.4545, and Ny = 7, var(Y) = 425.3333. Then:  
 

! 

F =
457.4545

425.3333
=1.0755

df =12 "1,7 "1=11,6

 

 
We can test for significance of this F in one of two ways. The first is to use a handy-dandy F -
table, preferably one photocopied from an expensive stats test that someone else paid for. The 
second is to use another free resource, R. The pf(F, x, y) function will give the probability 
of getting a value of F or higher when there are x and y degrees of freedom.  
 
> pf(var(high.p)/var(low.p), 11,6) 
[1] 0.5106039 

 
Is this significant? What does it mean if it is? 
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4.5 Exercises:  
 
1. Body temperatures for 25 intertidal crabs are presented below (and in an R script file…). All 
were caught and measured when ambient air temp is 24.3°C. Is the average crab body 
temperature significantly different from air temperature?  
 
> crabs <- c(25.8, 24.6, 26.1, 22.9, 25.1, 27.3, 24.0, 
+ 24.5,23.9,26.2,24.3,24.6,23.3,25.5,28.1,24.8,23.5, 
+ 26.3,25.4,25.5,23.9,27.0,24.8,22.9,25.4) 

 
(a) Calculate by hand (you can use R as a calculator…) showing each step the mean, 

standard deviation, standard error of the mean, t, and critical value for t (get t crit. 
from the tables or from R using qt(…)) for the above dataset to test the alternative 
hypothesis that the crabs are not at air temperature.  

(b) Verify your answer using R’s t.test(), discuss any discrepancy.  
(c) Compare the weights of winners and losers in the file fights2Data.txt using a 

two-sample unpaired t-test.  
(d) Test for heteroscedasticity  

 
2. Do a t-test on weights of winners [Outcome==1] and losers [Outcome==0] in the file 
fightsData.txt using the one-tailed test, the alternative hypothesis being that winners are 
heavier. 

 
(a) Calculate, by hand, showing each step, the mean, standard deviation, standard error of 

the mean, t and, critical value for t (get t crit. from the tables or from R using qt(…))  

(b) Verify your answer using R, discuss any discrepancy.  
(c) Test for heteroscedasticity  
 

3. Do a t-test on “W .wt" vs. "L. wt" from the file fights2Data.txt using the command lines:  
 

t.test(W.wt,L.wt,alternative="greater",paired=TRUE) 
t.test(W.wt,L.wt,alternative="greater",paired~FALSE)  

 
Compare & discuss. What is the difference between these? Hint: read the help file… 
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Chapter 5: Introducing the Analysis of Variance 
 

5.1 Fixed Effects ANOVA 
 

5.1.1 One Way ANOVA 
 
The Analysis of Variance provides insight into the entire class of linear models that are among 
the most widely used data analysis techniques today. In exploring ANOVA, we will begin with 
an interesting little dataset. Studies conducted at the University of Melbourne indicate that there 
may be a difference between the pain thresholds of blonds and brunettes [Note: I am not making 
this up…]. Men and women of various ages were divided into four categories according to hair 
color: light blond, dark blond, light brunette, and dark brunette. The purpose of the experiment 
was to determine whether hair color is related to the amount of pain produced by common types 
of mishaps and assorted types of trauma. Each person in the experiment was given a pain 
threshold score based on his or her performance in a pain sensitivity test (the higher the score, 
the higher the person’s pain tolerance). We will first compute the one-way ANOVA by “hand” to 
get a feel for the calculations. Then we will use R’s aov() function to compute the anova. 
Finally, we will test some variants on the hypothesis that the lightness of hair color is positively 
correlated with pain thresholds. For example, blondes are constantly subjected to jokes about 
intelligence and hair color, so we would expect blondes to have different pain thresholds than 
other hair colors… 
 

H1: light blonds ≠ all other hair colors 
H2: dark blondes ≠ all brunettes 
H3: light brunettes ≠ dark brunettes 

 
We will treat these as a priori hypotheses eventually. First we need to read in the data. By 
default, R treats anything that is not a number as a factor and assigns levels to it that will be used 
by the computer in linear models. Unfortunately for us, the default behavior puts the levels in an 
inconvenient order (alphabetical). We will have to fix this… 
 
> #You can source in these data or type. Choose your poison 
> source("HairColour.r") 
> # HairColour<-c("BrDk","BrDk","BrDk","BrDk","BrDk", 
> #               "BrLt","BrLt","BrLt","BrLt","BrLt", 
> #               "BlDk","BlDk","BlDk","BlDk","BlDk", 
> #               "BlLt","BlLt","BlLt","BlLt","BlLt") 
> # Pain<-c(32,39,51,30,35, 
> #         42,50,41,37,43, 
> #         63,57,52,41,43, 
> #         62,60,71,55,48) 
> hair<-data.frame(HairColour=factor(HairColour, 
+                    levels=c("BrDk", "BrLt", "BlDk", "BlLt")), Pain) 
> #I choose to set the levels in a certain order because of the 
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> #contr.helmert() function below. Look at the output, which is the 
> #matrix of contrast coefficients. 
> summary(hair) 
 HairColour      Pain      
 BrDk:5     Min.   :30.0   
 BrLt:5     1st Qu.:40.5   
 BlDk:5     Median :45.5   
 BlLt:5     Mean   :47.6   
            3rd Qu.:55.5   
            Max.   :71.0 
 

Note that hair$HairColour shows counts of four categories in the summary. In R, it is necessary 
that the discontinuous variables on the right side of the anova equation be specified as factors 
(you can check this with attributes() or is.factor(). The levels() command shows 
what the various treatments are going to be for the purpose of the analysis.  
 
> is.factor(hair$HairColour) 
[1] TRUE 
> levels(hair$HairColour) 
[1] "BrDk" "BrLt" "BlDk" "BlLt" 
> 
 

Now the formulae, you will recall (p. 210-211 in S&R) are: 
 

( )! "=
a

iiamong YYnSS
2

 

( )!! "=
a n

iijwithin YYSS
2

 

where i=1, …, a and j=1,…, ni 
 
So, just set up some columns in R. Note I introduce a couple of new (and very handy) functions 
here. You should look at the help file for aggregate() to see how it works. 
 
> tmp1<-aggregate(hair$Pain, list(hair$HairColour), FUN=mean) 
> mp2<-aggregate(hair$Pain, list(hair$HairColour), FUN=length) 
> hair$Grand.m<-rep(mean(hair$Pain), nrow(hair)) 
> hair$Treat.m<-rep(tmp1$x, tmp2$x) 
> #note the behavior of  giving a vector for the "times" argument in 
> #rep() 
> hair$Among<-(hair$Treat.m-hair$Grand.m)^2 
> hair$Within<-(hair$Pain-hair$Treat.m)^2 
> df<-c(3, sum(tmp2$x)-4, sum(tmp2$x)-1) 
> SS<-c(sum(hair$Among), sum(hair$Within), sum(hair$Among, 
hair$Within)) 
> MS<-SS/df 
> F.val<-c(MS[1]/MS[2], NA, NA) 
> P<-c(pf(F.val[1], df[1], df[2], lower=F), NA, NA) 
> tmp3<-data.frame(df, SS, MS, F.val, P) 
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> row.names(tmp3)<-c("Among", "Within", "Total") 
> tmp3 
       df     SS       MS    F.val           P 
Among   3 1382.8 460.9333 7.360213 0.002565140 
Within 16 1002.0  62.6250       NA          NA 
Total  19 2384.8 125.5158       NA          NA 
> 
 

So, there is your ANOVA table. Study this code carefully so you can see what was done. There 
are several subtle tricks used to make this come out looking so nicely. What do we conclude 
about the effect of hair color on pain thresholds? 

Well, you might guess that one does not need to do all this work every time you want to compute 
an ANOVA. The command is aov(),  which takes as its first argument a formula with the 
dependent variable on the left, followed by a tilde (~) with the independent variable(s) on the 
right. The key is this formula, which tells the computer what you want to do. You should spend 
a fair amount of time reading the help file on formula(), even though lots of the options won’t 
mean much yet. In a one-way ANOVA, this is pretty simple, but MUCH more complex models 
are possible! 
 
> tmp4<-aov(Pain~HairColour, data=hair) 
> summary(tmp4) 
 

I will not reveal the punch line. Enter the commands above and see if the ANOVA table matches 
what you computed before.  
 
Now, recall that one of the key assumptions of ANOVA is that the residual errors are normally 
distributed. How will you test this? You already know what function to use… Note there are a 
couple of ways to get the residuals. First there is a function residuals() that takes the name of 
an aov object (or any linear model) and spits back the residuals. Also, if you type 
names(tmp4), you will see that one of the parts of the aov() output is a variable called 
residuals. The numbers you seek reside there. Now, check on the normality of the residuals 
and show Dr. G your picture! 
 

5.1.2 Planned comparisons in ANOVA 
 
So, what about our a priori comparisons? We could use R to do this (although figuring out how 
was anything but obvious, but I have done it!!!) Lucky for us, that this class is not about making 
us a bunch of stupid button pushing primates, but a bunch of clever software users, so we can 
first do this “by hand”, and then look at how to get R to do it. Recall that we just want to 
compute some sums of squares for the relevant parts of our analysis. So, for our first hypothesis: 
 

H1: light blondes > all other hair colors 
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To put in pseudo math, let LS = the mean of the group on the left side (light blondes), RS = the 
mean of the group on the right side (non-light blonds), and ALL = the mean of everyone on the 
left side and everyone on the right side (all of our Pain data). Then  
 
SSkeft vs, right = ∑(nleft(LS − ALL)2 + nright(RS − ALL)2) 
 
Now, there are lots of ways to get this in R, but I am going to use the two aggregate files (tmp1, 
tmp2) that we made earlier. Recall that tmp1 contains the means for each hair class and tmp2 
the counts. I could use logical subscripting, but I am feeling lazy and will just use numbers to 
access the various rows. 
 
> tmp1 
  Group.1    x 
1    BrDk 37.4 
2    BrLt 42.6 
3    BlDk 51.2 
4    BlLt 59.2 
> L.m<-tmp1$x[4] 
> R.m<-sum((tmp2$x*tmp1$x)[c(1,2,3)])/sum(tmp2$x[c(1,2,3)]) 
> A.m<-sum(tmp2$x*tmp1$x)/sum(tmp2$x) 
>  
> SS.BlLt.All<- 
+   tmp2$x[4]*(L.m-A.m)^2 +  
+   sum(tmp2$x[c(1,2,3)])*(R.m - A.m)^2 
> #The first line is the SS for the left, the second line the SS 
right. 
> SS.BlLt.All 
[1] 897.0667 
> 

 
So, first I computed all my means, then I did my SS. This is a bit safer as you can check to make 
sure things make sense.  
 
Next hypothesis: 
 

H2: dark blondes ≠ all brunettes 
 
L.m<-tmp1$x[3] 
R.m<-sum((tmp2$x*tmp1$x)[c(1,2)])/sum(tmp2$x[c(1,2)]) 
A.m<-sum((tmp2$x*tmp1$x)[c(1,2,3)])/sum(tmp2$x[c(1,2,3)]) 
SS.BlDk.Br<- 
  tmp2$x[3]*(L.m-A.m)^2 +  
  sum(tmp2$x[c(1,2)])*(R.m - A.m)^2 
SS.BlDk.Br 
 

Final hypothesis: 
 

H3: light brunettes ≠ dark brunettes 
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YOU figure it out… When you are done, let’s assemble our new ANOVA table and check our 
results. 
 
> df<-c(3, 1,1,1, sum(tmp2$x)-4, sum(tmp2$x)-1) 
> SS<-c(sum(hair$Among), SS.BlLt.All, SS.BlDk.Br, SS.BrDk.BrLt,  
+       sum(hair$Within), sum(hair$Among, hair$Within)) 
> MS<-SS/df 
> F.val<-c(MS[1]/MS[5], MS[2]/MS[5],MS[3]/MS[5],MS[4]/MS[5], NA, NA) 
> P<-c(pf(F.val[1], df[1], df[5], lower=F),  
+      pf(F.val[2], df[2], df[5], lower=F), 
+      pf(F.val[3], df[3], df[5], lower=F), 
+      pf(F.val[4], df[4], df[5], lower=F), 
+      NA, NA) 
> tmp3<-data.frame(df, SS, MS, F.val, P) 
> row.names(tmp3)<-c("Among", "BlLt vs. All","BlDk vs. Br*", 
+                     "BrLt vs. BrDk", "Within", "Total") 
> tmp3 
              df        SS       MS     F.val           P 
Among          3 1382.8000 460.9333  7.360213 0.002565140 
BlLt vs. All   1  897.0667 897.0667 14.324418 0.001624124 
BlDk vs. Br*   1  418.1333 418.1333  6.676780 0.019981375 
BrLt vs. BrDk  1   67.6000  67.6000  1.079441 0.314269523 
Within        16 1002.0000  62.6250        NA          NA 
Total         19 2384.8000 125.5158        NA          NA 
 

So, what is going on? Let’s look at a boxplot of the four different treatment categories.  
 
> boxplot(split(hair$Pain, hair$HairColour)) 

 
It looks like blonds are pretty tough when it comes to pain. If our comparisons were orthogonal, 
then the sum of their sums of squares should equal SSamong. 
 
> sum(tmp3$SS[2:4]) 
[1] 1382.8 
 

As it happens I knew in advance that this was an orthogonal comparison. This is what is known 
as a helmert contrast, and R will spit up the contrast coefficient table for us, provided we first put 
our factors in the right order. If you type levels(hair$HairColor), you will see the order 
of the levels. We need our brunettes first and our blonds last. I entered the data in such a way that 
this would be true. There are other ways to change the order, but they involve a couple of tricks 
that we will postpone for now… Of course, one could just enter the desired matrix directly. 
 
> contrasts(hair$HairColour)<-contr.helmert 
> contrasts(hair$HairColour) 
     [,1] [,2] [,3] 
BrDk   -1   -1   -1 
BrLt    1   -1   -1 
BlDk    0    2   -1 
BlLt    0    0    3 
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Recall that, if the sample size in each treatment is constant, then the sum of the product of any 
two columns of this contrast matrix will be zero. This particular matrix, the helmert matrix, will 
always have this property when the sample sizes are uniform. When the sample sizes of each 
treatment are not uniform, then the contrasts may not be orthogonal (if the treatment sizes are 
unequal AND there are two or more treatments, your contrasts will NEVER be orthogonal!). 
This is the first bit of ugliness regarding what we call “unbalanced designs” that we will 
encounter along these lines. Keep it in the back of your mind…. 
 
So, here we do the contrasts in R: 
 
> #Here are the contrasts, a la R. Much easier... 
> #...but we need a couple of tricks. First, we compute the anova. 
Because 
> #the contrasts are assigned as an attribute of our independent 
variable, 
> #they will automatically be computed. All we have to do is ask the  
> #summary.aov() method to make a list within the anova table of the 
desired 
> #contrasts: 
>  
> summary(aov(Pain~HairColour, data=hair), 
+                split=list(HairColour = list("BlLt vs. All"=3, 
+                             "BlDk vs. Br*"=2, 
+                             "BrLt vs. BrDk"=1)))  
                            Df  Sum Sq Mean Sq F value   Pr(>F)    
HairColour                   3 1382.80  460.93  7.3602 0.002565 ** 
  HairColour: BlLt vs. All   1  897.07  897.07 14.3244 0.001624 ** 
  HairColour: BlDk vs. Br*   1  418.13  418.13  6.6768 0.019981 *  
  HairColour: BrLt vs. BrDk  1   67.60   67.60  1.0794 0.314270    
Residuals                   16 1002.00   62.62                     
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

 

5.2 Random Effects ANOVA 

5.2.1 Computing the variance among levels of a random factor 
 
Consider a series of farms selected for a trial of a new variety of corn that will be fed to dairy 
cows. The company marketing the seed wants to know if their new variety will result in higher 
milk yields. Both new and old varieties were grown to harvest on a company farm, then the corn 
was shipped to four dairy farms and fed to the cows on each farm where milk yield on two cows 
per feed variety was recorded for one month. As the statistician, you could care less about the 
differences among the farms. Of course they will be different, but how much variance will the 
random factor “farm” contribute to your trial? First, we will just test whether or not there is 
heterogeneity among farms in the milk yield of the cows fed the older variety of corn.  
 
> tmp1<-read.table("seedData.txt", h=T) 
> tmp1a<-tmp1[tmp1$Seed=="Old",] 
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> summary(tmp1a) 
  Seed   Farm      Yield       
 New:0   A:2   Min.   :23.85   
 Old:8   B:2   1st Qu.:27.01   
         C:2   Median :28.62   
         D:2   Mean   :28.95   
               3rd Qu.:30.85   
               Max.   :34.95   
> summary(tmp2a<-aov(Yield~Farm, data=tmp1a)) 
            Df Sum Sq Mean Sq F value   Pr(>F)    
Farm         3 97.001  32.334  38.185 0.002110 ** 
Residuals    4  3.387   0.847                     
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 

So, how much of the variance in milk yield is associated with different farms? Recall that the 
MSamong is expected to contain 

A
n!! +  and we are looking for 

A
! . So, we will solve the 

equation: 
 

)(
1

!! "= amongA MS
n

 

 
Where the MSresidual is an unbiased estimator of � . The easiest way to get these things is to 
simply save the anova table, then grab some parts of it. 
 
> tmp2b<-summary(tmp2a)[[1]] 
> #note that the anova table is a list, an object made up of one or 
more 
> #different kinds of objects. We are just interested in the first 
part, 
> #which is a data frame with the actual table. Note that n=2 yields 
per farm. 
> sigma.among<-(1/2)*(tmp2b[1,3]-tmp2b[2,3]) 
> sigma.among 
[1] 15.74348 
> sigma.within<-tmp2b[2,3] 
> 100*sigma.among/(sigma.among+sigma.within) 
[1] 94.89596 
> 
 

Whoa!!! 95% of the variance is among farms. Well, that sure is interesting. 
  

5.3 Nested ANOVA 

5.3.1 Using nested factors in a hierarchical analysis 
 
What the ^&!#@ is a nested analysis? Suppose that by design or accident, your must have some 
intermediate level of replication within treatments. For example, suppose you are doing a drug 
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trial on mice and you have three drugs and you want to test each one on thirty mice. Well, 
putting 20 mice in one cage is not going to work, so you  set up four cages of five mice each for 
each drug. Thus you have 3 drugs X 4 cages X 5 mice per cage. Are the cages within each drug 
treatment really replicates? That is, do you expect them all to be identical? Does this remind you 
of a discussion we had not very long ago? With regard to cages within drugs, what kind of 
ANOVA are we talking about?  
 
What we have here is a nested experimental design, in which we say that cages are nested inside 
of drug treatments. In a nested analysis, the subordinate level of the hierarchy is always a Model 
II, whereas the higher levels may be Model I or Model II. In this case, the higher level is Model I 
and this is what we call a mixed model nested anova. We are going to do a little exploration 
with a dataset here, and will talk more about mixed models in class. 
 
Our data set is an experiment examining changes in morphology of various housefly strains that 
are resistant in varying degrees to DDT. In the experiment, three jars were set up for each strain 
with a similar density of eggs for each jar. At eclosion, eight females were collected from each 
jar. For each fly, the researchers recorded the setae number on the third abdominal sternum. So, 
the experiment consists of 8 strains X 3 jars X 8 females per jar. We analyze this by nesting jars 
within strains. We want to know if the minor heterogeneity among the jars will affect our assay 
of morphology associated with DDT resistance. Something a little different is that we need to 
compute two F values, one for the effect of strain and one for the effect of jars within strains. But 
therein lies the rub. Our error term (for the denominator of the F test) CHANGES, depending on 
the level we want to test. For our strains effect, we want to use the MS of jar within strains as our 
error term. Think about it… It’s not really the error within jars that we compare our MS for 
strains with, but error AMONG the jars within the strains. Let’s plug and chug and see what 
comes out. 
 
> ddt<-read.table("ddtflyData.txt", h=T) 
> summary(ddt) 
     Strain   Jar        Setae       
 BS     :24   A:64   Min.   :14.00   
 LC     :24   B:64   1st Qu.:26.00   
 LDD    :24   C:64   Median :30.00   
 NH     :24          Mean   :29.99   
 NKC    :24          3rd Qu.:34.00   
 OL     :24          Max.   :49.00   
 (Other):48                          
> tmp3<-summary(tmp3<-aov(Setae~Strain+Jar%in%Strain, data=ddt))[[1]] 
> tmp3 
             Df Sum Sq Mean Sq F value    Pr(>F)     
Strain        7 1491.5   213.1  6.3747 1.179e-06 *** 
Strain:Jar   16  708.4    44.3  1.3247    0.1872     
Residuals   168 5615.1    33.4                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
>  
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This looks OK, but in fact something is amiss. Computers are stupid. In this particular case, the 
software does not know what error variance YOU want to use in the denominator of the F tests, 
but IT has a rule: use the Residuals MS. So, the F value for Strain is not what we want. 
Fortunately, we have all the stuff in the anova table that we need. In fact, I knew we were going 
to do this so I planned ahead and assigned the anova table to a variable. One funny thing though: 
R (but not S-Plus) takes the anova table, which is a data frame, and puts it in a list all by itself. 
Why I do not know… I DO know how to fix it: the syntax list.object[[1]] returns the 
first element of a list, in this case the anova table data.frame. Life with computers is full of these 
little diversions… Get used to it and you can always make yourself happy. Don’t get used to it 
and prepare for a lifetime of frustration. 
 
Now, we will simply put the right F value in the table and recompute the probability.  
 
> tmp3$"F value"[1]<-tmp3$"Mean Sq"[1]/tmp3$"Mean Sq"[2] 
> tmp3$"Pr(>F)"[1]<-round(pf(tmp3$"F value"[1], tmp3$Df[1], 
tmp3$Df[2], 
+                            lower.tail=F),4) 
> tmp3 
             Df Sum Sq Mean Sq F value Pr(>F)    
Strain        7 1491.5   213.1  4.8122 0.0044 ** 
Strain:Jar   16  708.4    44.3  1.3247 0.1872    
Residuals   168 5615.1    33.4                   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 

That wasn’t so bad, was it?6 It appears that the jars do not have a significant effect within the 
strains. This is all we really care about. Although we have not yet talked about two-way anovas, 
one might ask why not just analyze the data above as a two way, with “jar” and “strain” as the 
two factors. It’s because the jars are a random effect. Jar 1 in RKS has nothing to do with Jar 1 in 
RH. The jar “ID’s” are not levels in a factorial experiment, as if we had done this but instead of 
three jars used three temperatures. That experiment would cross Strain X Temperature; 
Temperature 1 in RKS is the same thing as Temperature 1 in RH. Get it?  
 
I bet you are thinking, “There must be an easier way to do this. That Dr. G really likes to make 
us suffer….”  Well, try this: 
 
summary(tmp3<-aov(Setae~Strain+Error(Jar%in%Strain), data=ddt)) 

 
What is being attempted is a stratified analysis (more on this later), but we are a little shy on data 
points. We really only care about the effect of Strain, using Jar within Strain as the error term. 
This is specified by the function Error() in the model statement. The singularity in the 
“Within” strata is irrelevant to this analysis and you can ignore it this time.  
 

                                                
6 One might wonder if this is a problem peculiar to R and the answer is NO. Most computer programs automatically 
use the residual sum of squares in all F tests in linear models, which is a good guess much of the time. But YOU 
have to know what you are doing.  The worst thing about “button pushing” statistics is that people think you don’t 
need to know any of this stuff, just how to use the program. Ignorance does not improve your data analysis…. 
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As for the expected variances in the mean squares, we have: 
 

Among strains:  
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where AB !  indicates subgroups B nested within groups A and � 2 indicates the squared 
effects of strain (i.e, (strain means –the grand mean) squared). 

 
Among jars within strains:  22

AB
n !+ ""  

Within jars: 2!  
 
Well, since the effect of the nested factor is NOT significant, one usually just drops it at this 
point. That’s what we will do here… 

 
Let’s look at a plot of bristle number in our strains, ignoring the jars.  
 
> boxplot(split(ddt$Setae, ddt$Strain)) 

 
We don’t know anything about the relative resistance of the strains, but clearly there is variation 
in setae number! One might do an additional set of experiments to determine if high levels of 
resistance resulted in lower numbers of setae or vice versa.  

 

5. 4 Exercises 
 

1. The file singerData.txt contains data on the height of singers in the NY Choral Society 
having four different voices. The foolish person who collected this data did not put it in 
record format. Here is an idea of how one might do that… THINK about what we are 
doing here. 

tmp3<-NULL 
for (i in seq(along=tmp2)){ 
tmp4<-data.frame(Voice=rep(names(tmp2)[i],          
   length(tmp2[,i])), Height=tmp2[,i]) 

  tmp3<-rbind(tmp3, tmp4) 
} 
summary(singers<-tmp3) 

a. Develop at least one a priori hypothesis about the heights of the singers. 
b. Test to see if there is heterogeneity among singers of different voices in their 

height. Be sure to state your null hypothesis. 
c. Test your a priori hypothesis(es). 
 

2. The file RatPupData.txt contains data on the weight of newborn male pups from several 
litters, along with information about litter size, etc. We are going to use these data to 
investigate the broad sense heritability of birthweight. Compute the added variance due to 
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Litter. Then, compute the ratio of the Among Family variance to the Total variance, 
which corresponds to the genetic model: 

P

G

V

V
H =

2  

Report the broad-sense heritability and comment on the limitations of this estimate of 
heritability. What would be a better way of estimating the proportion of genetic effects on 
the phenotype? 
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Chapter 6 

Two-way, three way, etc. ANOVA  
 

6.1 Two-way anova with equal cell sizes 

6.1.1 So, what’s the difference between this and the nested model? 
 
The difference between a nested anova and a two-way anova lies in the way the treatments are 
considered. In a nested analysis, the levels of one treatment are completely contained within a 
higher level. For example, if we have four bottles of flies reared at each of three different 
temperatures, the bottles are completely nested within temperatures. Bottle 1 at 20°C is not in 
any way the same as Bottle 1 at 25°C. On the other hand, Bottle 1 across all three temperatures 
contained medium prepared on March 1st, Bottle 2 contained media prepared on March 2nd, 
Bottle 3 on March 3rd and Bottle 4 on March 4th. We have a two-way experiment with the levels 
of temperature crossed with the levels of bottles.  
 
Nested: 

20°C 25°C 30°C 
B1 
B2 
B2 
B2 

B1 
B2 
B2 
B2 

B1 
B2 
B2 
B2 

 
Crossed or Factorial or Two-way 
 

 20°C 25°C 30°C 
Batch1 B1 B1 B1 
Batch2 B2 B2 B2 
Batch3 B3 B3 B3 
Batch4 B4 B4 B4 

 
To the casual observer, these two experiments LOOK about the same. The difference lies in the 
significance accorded the bottles of medium. In one, the effects are random. In the other, the real 
causative agent behind the effects may be unknown, but SOMETHING is known about it. 
 
So, let’s reconsider the experiment discussed in our last lab, where you examined morphological 
differences (setae number) among eight strains of houseflies that varied in resistance to DDT, 
with three jars of 8 flies for each genotype. Genotype is not a random variable here; we know 
why the genotypes differ, so that part of the analysis is Model I. In the experiment, we had one 
batch of jars that were divided randomly among the fixed genotype treatments. If this were the 
case, the jars would be nested inside of the genotypes and we have a mixed nested model. We 
will first compute the nested model and then, using the same data, IMAGINE that it is a different 
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experiment in which the jars become a fixed treatment effect. For example, perhaps you made 
three separate batches of media and filled eight jars from each batch. One jar from each batch 
was assigned to each genotype. Now, the Jar factor is no longer a random variable, but a fixed 
variable and we no longer have jars nested within strains, but two factors: jars and strains. So, 
here we go. We are first going to do this “by hand” so you can see the extra sums of squares we 
must compute. First, let’s get everything we need for both the nested and the two-way analyses. 
 

6.1.2 It’s a match() 

 
I also am giving you a heavy dose of R tips and tricks. First, I introduce a new (and quite useful) 
function, match(A, B). What it does is return a vector of indices of the items in “B” that match 
the items in “A”. [Note: I have to remind myself of this nearly every time I use this function. 
Because you are younger, perhaps you are more agile of mind than I am, or maybe it is just plain 
hard to recall.] Remember that these are JUST INDICES for vector B. You should perhaps do a 
little playing around to see what is going on. Consider the following: 
 
> A<-rep(c("R", "G", "B"), rep(2,3)) 
> B<-c("R", "G", "B") 
> A 
[1] "R" "R" "G" "G" "B" "B" 
> B 
[1] "R" "G" "B" 
> match(A, B) 
[1] 1 1 2 2 3 3 
> B[match(A,B)] 
[1] "R" "R" "G" "G" "B" "B" 
> 

 
That last operation is very clever, eh? Think about it!!! Now, we will use match() to make some 
vectors of means that we compute with aggregate(). The advantage of this is that you do not 
have to worry about keeping everything in order. The function match() takes care of the 
ordering for you. If you are confused at this point, you should do some experiments with the 
dataset that follows, like try to make the cell and treatment means with rep(), to see what I 
mean. Look at the parts of things below to ensure that YOU know what is going on. You want 
power and flexibility? Do yoga and work on your R programming skills… 
 
> ddt<-read.table("ddtflyData.txt", h=T) 
> summary(ddt) 
     Strain   Jar        Setae       
 RKS    :24   A:64   Min.   :14.00   
 RH     :24   B:64   1st Qu.:26.00   
 OL     :24   C:64   Median :30.00   
 NKC    :24          Mean   :29.99   
 NH     :24          3rd Qu.:34.00   
 LDD    :24          Max.   :49.00   
 (Other):48                          
> ddt$Cells<-interaction(ddt$Strain, ddt$Jar) 
> ddt$gr.m<-rep(mean(ddt$Setae), nrow(ddt)) 
> #Now, it's time to learn a programming trick. We will use "match()" to 
> #set up our vectors of various means. This is more or less idiot 
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> #proof. We let the computer put the right numbers in the right places. 
> tmp.sub<-aggregate(ddt$Setae, list(ddt$Cells), mean) 
> ddt$sub.m<-tmp.sub$x[match(ddt$Cells, tmp.sub$Group.1)] 
> tmp.strain<-aggregate(ddt$Setae, list(ddt$Strain), mean) 
> ddt$strain.m<-tmp.strain$x[match(ddt$Strain, tmp.strain$Group.1)] 
> tmp.jar<-aggregate(ddt$Setae, list(ddt$Jar), mean) 
> ddt$jar.m<-tmp.jar$x[match(ddt$Jar, tmp.jar$Group.1)] 
 

6.1.3 Nested analysis again… 
 

For the nested analysis, we assume that the jars are simply random samples of one batch of 
medium; there is no reason to think that there are systematic differences between Jar 1 in strain 
RKS and Jar 1 in RH. What we need for the nested analysis are the grand mean, the mean of 
each strain X jar subgroup (sub), and the mean for each level of strain. Now, let’s put together 
the nested anova table. You should have this from last week’s lab, so no need to retype (we 
hope…) 
 
#Nested analysis, assuming jar effects are random 
> df<-c((tmp1<-length(unique(ddt$Strain)))-1, 
+       tmp1*((tmp2<-length(unique(ddt$Jar)))-1), 
+       tmp1*tmp2*(8-1)) 
> SS<-c(sum((ddt$strain.m-ddt$gr.m)^2), sum((ddt$sub.m-ddt$strain.m)^2), 
+       sum((ddt$Setae-ddt$sub.m)^2)) 
> MS<-SS/df 
> F.val<-c(MS[1]/MS[2], MS[2]/MS[3], NA) 
> P<-c(pf(F.val[1],df[1],df[2],lower=F), 
+      pf(F.val[2],df[2],df[3],lower=F), 
+      NA) 
> data.frame(df, SS, MS, F.val, P, row.names=c("Strain", "Jar%in%Strain", 
"Residual")) 
               df        SS        MS    F.val           P 
Strain          7 1491.4531 213.06473 4.812190 0.004436966 
Jar%in%Strain  16  708.4167  44.27604 1.324703 0.187228134 
Residual      168 5615.1250  33.42336       NA          NA 
> 
 
Verify for yourself that this is what you obtain using aov() in R, after computing the correct F 
value for Strain. 
 

 6.1.4 Two-way ANOVA with equal sample sizes 
 
Now, let’s assume that the medium in Jar 1 across all strains was made on one day, the medium 
in Jar 2 was made on the next, etc. so that there are known, fixed differences among the jars. 
This is now a two-way analysis with fixed effects. For the two-way analysis we need the grand 
mean, the sum of squares for Strain, the sum of squares for Jar, the sum of squares for the 
interaction term (Strain x Jar), and the sum of squares within the subgroups. You can see the way 
we compute these on P. 324 of S&R.  
 
> #Two-way analysis, assuming jar effects are fixed. 
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> df<-c((tmp1<-length(unique(ddt$Strain)))-1, (tmp2<-
length(unique(ddt$Jar)))-1, 
+       (tmp1-1)*(tmp2-1),tmp1*tmp2*(8-1)) 
> SS<-c(sum((ddt$strain.m-ddt$gr.m)^2), sum((ddt$jar.m-ddt$gr.m)^2), 
+       sum((ddt$sub.m-ddt$gr.m)^2)-sum((ddt$strain.m-ddt$gr.m)^2)- 
+       sum((ddt$jar.m-ddt$gr.m)^2), 
+       sum((ddt$Setae-ddt$sub.m)^2)) 
> MS<-SS/df 
> F.val<-c(MS[1]/MS[4], MS[2]/MS[4], MS[3]/MS[4], NA) 
> P<-c(pf(F.val[1],df[1],df[4],lower=F), 
+      pf(F.val[2],df[2],df[4],lower=F), 
+      pf(F.val[3],df[3],df[4],lower=F), 
+      NA) 
> data.frame(df, SS, MS, F.val, P=round(P,4), row.names=c("Strain", "Jar", 
+                                    , "Strain x Jar", "Residual")) 
              df         SS        MS    F.val           P 
Strain         7 1491.45312 213.06473 6.374725      0.0000 
Jar            2   42.79167  21.39583 0.640146      0.5285 
Strain x Jar  14  665.62500  47.54464 1.422497      0.1474 
Residual     168 5615.12500  33.42336       NA          NA 
> 

 
Verify this result using aov() in R. [Hint: there are TWO ways to specify an interaction between 
factors in R. Y~A*B is the same thing as Y~A+B+A:B] 
 
 
Note that in this case, there is no significant interaction between Strain and Jar. If there are no 
interactions, we usually want to get rid of the interaction term. Why, you ask… Well, the 
expected variance of the MSinteraction term is: 
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If that latter part really is zero, then we are underestimating MSresidual, our estimate of the error 
variance. What one can do in this case is simply to add the degrees of freedom in the interaction 
term of the ANOVA table to the Residual df, and add the interaction SS to the Residual SS, then 
recomputed the MSresidual. 
 
> #Now we combine the interaction effects with the residuals and recompute... 
> df<-c((tmp1<-length(unique(ddt$Strain)))-1,  
+       (tmp2<-length(unique(ddt$Jar)))-1, 
+       (tmp1-1)*(tmp2-1)+tmp1*tmp2*(8-1)) 
> SS<-c(sum((ddt$strain.m-ddt$gr.m)^2), sum((ddt$jar.m-ddt$gr.m)^2), 
+       sum((ddt$sub.m-ddt$gr.m)^2)-sum((ddt$strain.m-ddt$gr.m)^2)- 
+       sum((ddt$jar.m-ddt$gr.m)^2)+ 
+       sum((ddt$Setae-ddt$sub.m)^2)) 
> MS<-SS/df 
> F.val<-c(MS[1]/MS[3], MS[2]/MS[3], NA) 
> P<-c(pf(F.val[1],df[1],df[3],lower=F), 
+      pf(F.val[2],df[2],df[3],lower=F), 
+      NA) 
> data.frame(df, SS, MS, F.val, P=round(P,4), row.names=c("Strain", "Jar", 
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+                                    , "Residual")) 
          df         SS        MS     F.val           P 
Strain     7 1491.45312 213.06473 6.1740686      0.0000 
Jar        2   42.79167  21.39583 0.6199963      0.5391 
Residual 182 6280.75000  34.50962        NA          NA 
> 

 
Run the model in R using aov() without the interaction term to see verify your result. 
 

6.2 Two-way anova with unequal cell sizes  

6.2.1 Some really bad news 
 
Well, you are probably feeling pretty powerful by now, able to do analysis of variance on both 
nested factors and on two factors. As you might guess, adding more factors is simply more of the 
same. Just more sums of squares… But something VERY ugly happens if one of your 
experimental units dies or is lost or you just screw it up. The case were every cell of an 
experiment has the same number of replicates is called a “balanced design”. All of the 
mathematics we have used here only works right when we have a balanced design. When we do 
not, everything goes to hell in a hand basket (nice phrase, huh?). The math gets very complex, 
but the reason your experiment has turned to crap is pretty simple: when there are unequal 
sample sizes in cells (or entire cells are missing), the variance components differ for each level 
of variation (thus, they are no longer independent). As long as we can ignore the interaction 
between factors, as in the nested ANOVA, we are OK and can get around the problems of an 
unbalanced design. But, even when we want to ignore the interaction in a two-way anova, we 
still must compute it (see above) and add it to the residuals. The problem has to do with a loss of 
orthogonality and basically everything from this point on is a disaster. Let me show you the sort 
of thing that can happen.  
 

6.1.2 What is the problem with unbalanced designs? 
 
We will use some data on the birthweight of rat pups from several different litters. We will use 
the first three columns of the data, examining the effects of Sex and level of nicotine in the 
mother’s Diet on the birthweight of the pups. 
 
> #Unbalanced designs 
> tmp1<-read.table("ratwtData.txt", h=T) 
> summary(tmp1) 
     Weight          Sex          Diet        Litter          Lsize       
 Min.   :3.680   Female:66   Control:57   Min.   : 1.00   Min.   : 2.00   
 1st Qu.:5.652   Male  :84   High   :28   1st Qu.: 7.25   1st Qu.:12.00   
 Median :6.025               Low    :65   Median :14.00   Median :14.00   
 Mean   :6.054                            Mean   :13.13   Mean   :13.59   
 3rd Qu.:6.370                            3rd Qu.:19.00   3rd Qu.:15.00   
 Max.   :8.330                            Max.   :27.00   Max.   :18.00   
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You can see by the Sex and Diet summaries that the data are unbalanced. We can see where the 
problems are with 
 
> replications(Weight~Sex*Diet, data=tmp1) 
$Sex 
Sex 
Female   Male  
    66     84  
 
$Diet 
Diet 
Control    High     Low  
     57      28      65  
 
$"Sex:Diet" 
        Diet 
Sex      Control High Low 
  Female      21   14  31 
  Male        36   14  34 
 

Well, the computations can be done by hand just like our examples above, but we will just use 
the aov() function from here on.  
 
> summary(tmp2a<-aov(Weight~Sex*Diet, data=tmp1)) 
             Df Sum Sq Mean Sq F value   Pr(>F)     
Sex           1  2.294   2.294  5.8954 0.016415 *   
Diet          2  6.145   3.072  7.8948 0.000558 *** 
Sex:Diet      2  0.865   0.433  1.1116 0.331847     
Residuals   144 56.039   0.389                      
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 

So, what’s wrong with that? Well, just for fun, let’s change the order of the variables. 
 
> summary(tmp2b<-aov(Weight~Diet*Sex, data=tmp1)) 
             Df Sum Sq Mean Sq F value    Pr(>F)     
Diet          2  6.944   3.472  8.9224 0.0002223 *** 
Sex           1  1.494   1.494  3.8403 0.0519647 .   
Diet:Sex      2  0.865   0.433  1.1116 0.3318473     
Residuals   144 56.039   0.389                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 

Hmmm… Sex had a significant effect in the first case, but not in the second. Do you think that 
whether or not a factor has a significant effect on a biological process should depend on the order 
in which you enter it in the anova function? It’s because of the lack or orthogonality, which 
means that the sum of squares you estimate for one term depends on the sum of squares you 
estimate for the other terms. Note that the sums of squares in these two analyses are different. 
Try this on the ddt data we started with to see if order matters. What can you conclude? 
  
In practice, one often says that if the main effects are highly significant, like P<0.001, then you 
don’t really need to worry about this. HA! It’s not a bad idea, but you better check out some 
other methods. First, since we are interested in the main effects and the interaction is not 
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significant, we are going to get rid of it. This has the effect of adding the degrees of freedom and 
the sums of squares from the interaction term to the residuals. We will try both orders of 
independent variables again, just to see what happens.  
 
> summary(tmp2c<-aov(Weight~Sex+Diet, data=tmp1)) 
             Df Sum Sq Mean Sq F value    Pr(>F)     
Sex           1  2.294   2.294  5.8864 0.0164780 *   
Diet          2  6.145   3.072  7.8828 0.0005611 *** 
Residuals   146 56.904   0.390                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
> summary(tmp2d<-aov(Weight~Diet+Sex, data=tmp1)) 
             Df Sum Sq Mean Sq F value    Pr(>F)     
Diet          2  6.944   3.472  8.9087 0.0002236 *** 
Sex           1  1.494   1.494  3.8345 0.0521152 .   
Residuals   146 56.904   0.390                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 

Verify for yourself what happened to the interaction sums of squares. As you see, there is still a 
problem. 

6.2.3 LOTS of folks must have unbalanced data; statisticians must have 
fixed this, right? 
 
Uh… No. There are several “solutions” available and more are developed all the time, but the 
problem goes pretty deep into the mathematics of anova. Thus, this major problem in data 
analysis has only one really nice solution: balance your design. What this entails, unfortunately, 
is usually discarding data to get a balanced design. If your design was ALMOST balanced, you 
might be justified in filling in the missing cells with the mean of the other values in that cell. 
What “almost” means is left to your integrity and intuition. Our rats are not “almost” balanced; 
they are seriously messed up. In this case, we saw from the table that the smallest cell had 14 
observations, so, we could randomly discard all but 14 observations from each of the cells with 
more than this and do our analysis: 
 
> #Balance the design by deletion... 
> tmp1t<-table(tmp1$Sex, tmp1$Diet) 
> tmp1tt<-min(tmp1t) 
> tmp1$Cell<-interaction(tmp1$Sex, tmp1$Diet) 
> tmp3<-unique(tmp1$Cell) 
> tmp.out<-NULL 
> for (i in seq(along=tmp3)){ 
+   tmp4<-tmp1[tmp1$Cell==tmp3[i],] 
+   tmp4<-tmp4[sample(seq(nrow(tmp4)), 
+                     tmp1tt),] 
+   tmp.out<-rbind(tmp.out, tmp4) 
+ } 
> replications(Weight~Sex*Diet, data=tmp.out) 
$Sex 
[1] 42 
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$Diet 
[1] 28 
 
$"Sex:Diet" 
        Diet 
Sex      Control High Low 
  Female      14   14  14 
  Male        14   14  14 
 
> summary(tmp4a<-aov(Weight~Sex+Diet, data=tmp.out)) 
            Df Sum Sq Mean Sq F value   Pr(>F)    
Sex          1  0.414   0.414  0.9354 0.336383    
Diet         2  4.327   2.163  4.8833 0.009978 ** 
Residuals   80 35.443   0.443                     
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

 
The catch: we started with 150 data points, we now have 84. That’s a lot to toss out! And, based 
on this sample of our data, the effect of diet is significant, but pretty small. Other samples might 
yield a different result.  One could improve on this in this modern computer age by doing a 
bootstrap of this, but more about that later… 

6.2.4 What editors ask you to do when you write a paper 
 
Option two is to use one of the several methods of  “adjusting” the sums of squares. SAS 
pioneered this with their “Type III” sums of squares that have become the publication standard. 
Unfortunately, the theoretical underpinnings for the technique are almost nonexistent. If you talk 
this over with a good linear models statistician, they will generally poo-poo the idea. Still, 
reporting Type III’s is often the path of least resistance. You can get the “Type III” SS from R by 
using the function drop1() BUT if you include an interaction term, then the estimates of the 
main effects are meaningless. Thus, unless the interaction is NOT significant and you can omit it, 
Type III sums of squares are a fantasy picture of what is really going on. What drop1() does is 
to drop each term and recompute the model. We will try both orders of the independent variables 
to show you that you get the same answer each time.  
 
> drop1(tmp2c, test="F") 
Single term deletions 
 
Model: 
Weight ~ Sex + Diet 
       Df Sum of Sq      RSS      AIC F value     Pr(F)     
<none>                56.904 -137.391                       
Sex     1     1.494   58.398 -135.502  3.8345 0.0521152 .   
Diet    2     6.145   63.049 -126.009  7.8828 0.0005611 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
> drop1(tmp2d, test="F") 
Single term deletions 
 
Model: 
Weight ~ Diet + Sex 
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       Df Sum of Sq      RSS      AIC F value     Pr(F)     
<none>                56.904 -137.391                       
Diet    2     6.145   63.049 -126.009  7.8828 0.0005611 *** 
Sex     1     1.494   58.398 -135.502  3.8345 0.0521152 .   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
So, the drop1() function takes, as arguments, a linear model or anova object, a part of the 
formula that shows what terms you want to work with and what kind of test you want to 
calculate. Since we are doing anova, we want F tests. What you get back is a bit weird. The first 
line is for no terms dropped. In the second line, we drop the effect of Sex and recalculate the 
sums of squares for the rest of the model. Recall that 

eractionDietSexTotal
SSSSSSSS

int
++=  when 

everything is orthogonal. By subtraction of the model without sex from the model with sex, we 
can estimate the contribution of the SSSex term to the complete model. One then computes the 
mean square, and divides that MS by the MSResidual from the full model for the F test you see 
above. RSS is the residual sum of squares with “Sex” removed. Let’s not worry about AIC at the 
moment; there is nothing you can do with it at this point. The SSSex you see above is the Type III 
sum of squares invented by SAS (also known as “sigma sum of squares”). It may or may not tell 
you what is going on but every editor “knows” that this is the sum of squares you MUST use 
when you have an unbalanced design. Since you are, presumably, interested in the Truth, you 
might want to consider whether or not this really is a good idea. The good thing is that most of 
the time, Type III values are pretty conservative for the main effects and you are unlikely to be 
making a type I Error [Note: this is a different “Type” than the “Type” in Type III]. The bad part 
is your type II error goes up and your power goes down. 
 

6.2.5 Filling in a couple of missing values with cell means 
 
I did an experiment examining cross-generational effects of rearing temperature on population 
growth rate. Parent Drosophila melanogaster were reared from eggs to adulthood at 18, 25, or 
29°C. They were all transferred to 25°C for a few hours and eggs were collected. Those eggs 
were then divided up into 18, 25, and 29°C treatments. Four vials of 50 eggs were placed in each 
Parental X Offspring treatment combination and population growth rate of the vial (lambda) was 
estimated. The hypothesis being tested is that parental developmental temperature will affect 
offspring fitness, measured as � . Let’s take a look at the data. Note that the Parental and 
Offspring temperatures are numbers, but we want them to be factors for ANOVA. 
 
> tmp1<-read.table("xgenlam.txt", h=T) 
> summary(tmp1) 
     P.trt        O.trt        Lambda       
 Min.   :18   Min.   :18   Min.   : 4.535   
 1st Qu.:18   1st Qu.:18   1st Qu.: 4.851   
 Median :25   Median :25   Median :31.367   
 Mean   :24   Mean   :24   Mean   :24.486   
 3rd Qu.:29   3rd Qu.:29   3rd Qu.:35.218   
 Max.   :29   Max.   :29   Max.   :42.368   
                           NA's   : 3.000   
> tmp1$P.trt<-as.factor(tmp1$P.trt) 



BIOL425/680 Spring 2005 Lab Session 6 
 

 77 

> tmp1$O.trt<-as.factor(tmp1$O.trt) 
> hist(tmp1$Lambda) 
> 

 
Note the three “NA’s”. We have two missing observations in this otherwise balanced dataset. 
Here I will show you how we can use some of the tricks we learned earlier in this lab to fill in 
those missing blanks with the cell mean. This dataset will be analyzed three different ways in the 
exercises. 
 
> tmp1$cell<-interaction(tmp1$P.trt, tmp1$O.trt) 
> #note the na.rm=T argument in the following. This is passed on to 
> #mean() so that the missing values will be ignored. This is important! 
> tmp2<-aggregate(tmp1$Lambda, list(tmp1$cell), mean, na.rm=T) 
> tmp1$cell.m<-tmp2$x[match(tmp1$cell, tmp2[,1])] 
> #Now this is really handy. ifelse() takes three arguments. The first 
> #is a vector being tested against some condition, the second is what 
> #should be returned if the test is TRUE, the second is what should be 
> #returned if the test is FALSE. The function returns a vector the same  
> #length as the original vector. 
> tmp1$Lam.new<-ifelse(is.na(tmp1$Lambda), tmp1$cell.m, tmp1$Lambda) 
> summary(tmp1) 
 P.trt  O.trt       Lambda            cell        cell.m          Lam.new       
 18:12  18:12   Min.   : 4.535   18.18  : 4   Min.   : 4.668   Min.   : 4.535   
 25:12  25:12   1st Qu.: 4.851   25.18  : 4   1st Qu.: 4.815   1st Qu.: 4.837   
 29:12  29:12   Median :31.367   29.18  : 4   Median :31.806   Median :31.340   
                Mean   :24.486   18.25  : 4   Mean   :24.526   Mean   :24.526   
                3rd Qu.:35.218   25.25  : 4   3rd Qu.:35.115   3rd Qu.:35.299   
                Max.   :42.368   29.25  : 4   Max.   :40.876   Max.   :42.368   
                NA's   : 3.000   (Other):12                                     
> 
 

No missing values! Cool, huh? 

 

6.3 Exercises 
 

1. Let’s look at the effect of sex and parasite treatment on the body weight of some 
pheasants. The file “pheasant2Data.txt” contains data on 22 male and 22 female chicks. 
Half of each sex was treated with a miticide and the other half were left as controls. At 
some time after the miticide treatment, the growing chicks were measured. Other aspects 
of morphology were also measured, however we will ignore these at present. Computer 
the means and standard errors for each combination of factors and put in a table. Then do 
boxplots to compare the means. In pheasants, males have bright plumage that is 
important in sexual selection. Construct a hypothesis about which sex might be most 
strongly affected by parasites, based in the idea that brighter colors may be an honest 
indicator of parasite load. Do the analysis to test your hypothesis.  

 
2. Time to make good on that threat from earlier. Let’s see what the different analyses of 

Lambda, the fitness of the offspring in response to cross-generational temperature effects 
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look like. First, do the following ANOVAs and comment on the main effects and 
interactions: 

a. The original unbalanced dataset (note: you need the argument 
“na.action=na.omit” in aov(). Realize that the significant interaction means that 
Type III sums of squares are going to be, at best, meaningless and at worst, 
bizarre. 

b. The new, balanced dataset we constructed by adding means to the cells missing 
data. 

c. Balance the data by randomly subtracting data from the cells. Compare the 
conclusions from each ANOVA. 
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Chapter 7 
 

Data Exploration, Graphing, and Principal 
Components 
 

7.1  I already know how to draw a graph... 

7.1.1 ...but one can always learn more! 

Graphical analysis often takes the back seat to "statistics", as if somehow the graphical 
presentation of data was a minor component of research science. It is a rare professional reader, 
however, who does not turn to the graphics first in a paper, to see if he or she can discern what 
the take-home message of the paper is without reading too much text. Furthermore, a good 
graphical presentation can convey more information in an interpretable fashion than text or 
tables. The graphics usually present THE most important data and findings in any paper, so you 
had better learn to pay attention! 

Even more important than the publication aspects is the chance you have to learn what your data 
has to say. Numbers are far more abstract than graphs and it is easy to screw up BIG TIME. I do 
it all the time and I bet you will, too. You should always graph your data FIRST, then do 

summary statistics and, if necessary, hypothesis testing statistics. But you MUST take a look at 
the graphs at each step along the way because if your statistics tell you that A and B are different, 
but they appear to have similar distributions on the graph, you are on the verge of being a slave 
of statistics at the cost of common sense. It's far better to catch you own mistakes in private than 
to be confronted by them in front of an audience of your peers. 

7.1.2 So, why don't most statistics textbooks have chapters on 
graphical analysis? 

I don't know. Almost nobody teaches anything about graphing, assuming that you will just "pick 
it up". Most folks just mimic the bad practices of others. There are three good books on 
graphing. Edward Tufte's "The Visual Display of Quantitative Data" is the greatest book every 
written on the subject. It looks and reads like an art book. The ideas are brilliant. Tufte's "Visual 
Explanations" is even more imaginative, pushing the envelope between art and science. Bill 
Cleveland's "Visualizing Data" looks more "scientific"; Cleveland has invented a number of data 
exploration tools, including Trellis graphics that we will explore later today. You may be 
interested to know that both Tufte and Cleveland use R to make their graphs. There are many 
high level plotting functions built into this program that produce amazingly informative graphics. 
Most of these you will NEVER see in a piece of expensive commercial software like Cricket 
Graph or SigmaPlot because bankers and consultants don’t use scientific graphics 

7.1.3 R graphics 

It may seem odd to use a command line to make a picture, but it really is a good way. In R, all 
graphics are written to a graphics device, be it a printer or a graphics window or a graphics file 
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that can be opened in something like Illustrator, PowerPoint, or Photoshop. You can open a 
graphics window with X11() [UNIX, OS X, or Windows with an X11 driver], quartz() [OS 
X only], or windows() [Windows only] commands, which can take a whole bunch of 
parameters. Most of the characteristics of any graphics device are set with par() . If you want to 
change margins, line widths, colors, etc., there is a par() command that will do it. Most of the 
built in higher level graphics commands can take some par() commands directly and do the 
right thing. There are SOOOO many options here that I will be leaving it up to you to explore the 
help file for par() . Nearly everything can be configured to your liking; if you just want to 
accept the defaults, then that's your choice. Look at your figures with a critical eye and ask if 
they really are good enough. Personally, I usually save figures as "pdf" with the .pdf suffix, these 
are vector graphics, which means that they are fully editable in other programs such as 
Illustrator. This is Adobe’s “Portable Document Format” and it is a universal standard, especially 
within the printing and graphics industry. Every printing process (including copies at Kinko’s) 
can be done with a PDF document. The one entity that has balked at being part of this universe is 
Microsoft. They do not allow their software to treat pdf objects as vector graphics, so everything 
is converted to a bitmap (i.e., it will look fuzzy). You can export your graphics to Microsoft’s 
proprietary “Windows metafiles” (*.wmf) or “Enhanced Windows metafiles” (*.emf) which are 
vector graphics. This was discussed on an earlier handout; please refer to that for more details. 

 

7.2 Data Exploration using R 
Probably the most important thing you can learn to do with data is to LOOK AT IT in various 
ways. Scientists often waste a lot of time doing misleading analyses because they never look at 
their data, only at summary statistics. So, we are going to go through an exhausting exploration 
of one of my datasets. Download wing98.txt to your computer and import it into R: 

 
> flies<-read.table("wing98.txt", h=T) 
> summary(flies) 
      Loc           Lat             Vial       Sex     Side          L1        
 BA     : 90   Min.   :35.50   Min.   :1.000   F:409   L:830   Min.   :0.920   
 AA     : 40   1st Qu.:40.60   1st Qu.:2.000   M:421           1st Qu.:1.210   
 DA     : 40   Median :43.38   Median :3.000                   Median :1.270   
 DI     : 40   Mean   :44.38   Mean   :3.171                   Mean   :1.279   
 GF     : 40   3rd Qu.:48.70   3rd Qu.:4.100                   3rd Qu.:1.350   
 L1     : 40   Max.   :56.09   Max.   :6.300                   Max.   :1.480   
 (Other):540                                                                   
       L2              W          Cont     
 Min.   :0.900   Min.   :0.830   Eur:450   
 1st Qu.:1.050   1st Qu.:1.010   NoA:380   
 Median :1.100   Median :1.060             
 Mean   :1.099   Mean   :1.062             
 3rd Qu.:1.150   3rd Qu.:1.110             
 Max.   :1.280   Max.   :1.210 

 

These data appeared in Gilchrist, G. W., R. B. Huey, and L. Serra. 2001. Rapid evolution of 
wing size clines in Drosophila subobscura. Genetica HE-07: 1-14 and Huey, R. B., G. W. 
Gilchrist, M. L. Carlson, D. Berrigan, and L. Serra. 2000. Rapid evolution of a geographic cline 
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in size in an introduced fly. Science 287:308-309. The data are left wing measurements on male 
and female Drosophila subobscura from different latitudinal sites in Europe (the ancestral 
population) and North America (one of the invasive populations founded in ~1978). The data 
were collected in a common garden design (everyone know what that is?  If not, you better ask 
right now!!!) and so the differences between different localities represent genetic differences in 
wing size. L1 is the length of the proximal portion of wing vein IV, L2 is the distal portion, and 
W is the wing width. 

 

The key question in this research is whether or not clines (latitudinal patterns in organismal 
traits) have evolved in the colonizing populations during the 20 or so years since they landed in 
the New World. In the papers, we compared clines in wing size in Europe with those in North 
America and  found that females showed a parallel increase in size on both continents. Males 
seem to be doing something a little different in North America. So, let's do some data 
exploration. 

7.2.1 Check the assumptions of linear modeling (ANOVA and 
regression) 

What do the distributions of wing sizes look like for each sex on each continent? Let's start out 
by creating a new variable, wing length, that is the sum of L1 and L2. We will use this for most 
of our early explorations. 

 
> flies$WL<-flies$L1+flies$L2 
> range(flies$WL) 
[1] 1.82 2.69 

Start with a quick look at the boxplots just to see what's what: 
 
tmp1<-split(flies$WL, list(flies$Sex, flies$Cont)) 
boxplot(tmp1) 

split() takes a numerical vector and "splits" it into a list of vectors according to the sets of 
factors (cells in our ANOVA terminology) you specify in the second argument. Feeding this to 
boxplot() gives you the four boxplots. What do you think? Are NA and Europe different in 
their distributions? How about males and females? 

Let's take a look at the histograms. If you note the range of values from the boxplot, we can put 
the plots on a common axis for better comparison and we already have the "split" data. Note that 
seq(along=tmpl) is a clever way of getting a sequence exactly the same length as the 
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elements of a list (tmpl is a list) without knowing how long a sequence you need. Very useful in 
programs... 

 
par(mfrow=c(2,2)) 
tmp.bin<-seq(1.8, 2.8, by=0.05) 
for (i in seq(along=tmp1)){ 
  hist(tmp1[[i]], breaks=tmp.bin, main=names(tmp1)[i]) 
} 

And how about those QQ plots? 
  
par(mfrow=c(2,2)) 
tmp.bin<-seq(1.8, 2.8, by=0.05) 
for (i in seq(along=tmp1)){ 
  qqnorm(tmp1[[i]],main=names(tmp1)[i]) 
  qqline(tmp1[[i]]) 

} 

The data look pretty normal, although a log transformation might not hurt. You can try that later, 
For now, how about patterns within continents. Does wing size increase with latitude? In all 
cases? Bill Cleveland invented the concept of "conditioning plots" where different subsets of 
your data are plotted in a grid. Cleveland’s plots are also known as Trellis or Lattice plots and 
are fully implemented in R. These are the BEST exploratory tools for complex "x vs. y" kinds of 
data as you can put everything on a single page and compare. The lattice library expands 
these methods to practically every kind of figure you can imagine. which takes a formula just 
like an ANOV A or regression model statement. The left side must be numeric, the right side 
could be either numeric or categorical, and you can have as many "conditioning" variables as 
you want. The general syntax is: xyplot(y-x|var1*var2) [Note: That vertical line between 
x and var1 is the upper case character on the backslash key]. This produces a scatterplot of x vs. 
y for each combination of var1 and var2. 

 
> library(lattice) 
> xyplot(flies$WL~flies$Lat|flies$Sex*flies$Cont) 

Gee, that's cool. The only thing that would be cooler is if you could put a regression line through 
the plot. Well, you can because you can define your own panel function (or use a combination of 
existing panel functions) to make whatever kind of graph you want. The default panel function 
here is panel.xyplot(x, y, …). Below I am going to define a new panel function right in 
the call to xyplot() that will plot those points with solid circles (you can look at the options 
with your show.marks() function) and then draw a red regression line through them. Pay 
attention! 

 
xyplot(flies$WL~flies$Lat|flies$Sex*flies$Cont, 
       panel=function(x,y, ...){ 
         panel.xyplot(x, y, pch=16) 
         panel.xyplot(x, y, type="r", col="red", lwd=2) 
         } 
       ) 
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A little tricky... "panel=..." sets the function for the graph. Note that the axes have already 
been drawn; in a panel function you use functions that add things to a figure, not that create the 
figure anew. I call panel.xyplot twice, once to draw the points and once (with the 
type=’r’) to draw the regression line. I added eol="red", lwd=2 to make that line red and 
two points in width. Note that we have defined a function here with the funetion(x, y) 
function. Yes, there is a function for creating functions… You can use this to make your own 
functions for things that you do frequently. Read the funetion() help file for more info. 
Anyway, this is a very cool plot and tells you a lot. But you cannot generally publish it. These 
plots are really for you to explore things. You can change just about anything (I know, the help 
page looks REALLY scary, but it is not really all that bad). One thing that I like is to change to 
an alternative color theme. You can do this by initiation of a trellis graphics device or by 
changing the options in your setup.  

 
> trellis.device(theme="col.whitebg") 
> xyplot(flies$WL~flies$Lat|flies$Sex*flies$Cont, 
+        panel=function(x,y, ...){ 
+          panel.xyplot(x, y, pch=16) 
+          panel.xyplot(x, y, type="r", col="red", lwd=2) 
+          } 
+        ) 

 or 
 
options(lattice.theme  = "col.whitebg") 

Here are a couple more examples of lattice/trellis plots to explore your data. 
 
bwplot(flies$WL~flies$Lat|flies$Sex*flies$Cont, horiz=F, 
       scales=list(x=list(at=seq(1, 21, 2),  
       labels=rep("",11), tck=1))) 

 
xyplot(flies$WL~flies$Lat|flies$Sex*flies$Cont, 
       panel=function(x,y, ...){ 
         panel.xyplot(x, y, pch=16) 
         panel.loess(x, y, span=2/3, col="red", lwd=2) 
         } 
       )  #a loess curve is a local regression… more on this later! 

7.2.3 Enough exploration. Let's make a beyootiful figure for a 
presentation or paper. 

So, let's combine all of these data into a single plot for publication. Our goal here is to make 
something beautiful and that takes a bit of coding, so please be patient and pay attention! You 
will need to do this some day and this is a great way to do it. We are going the whole nine yards, 
plotting means, error bars (± 2 standard errors: why???), and regression lines for all four subsets 
of the data. No program does this easily (and lots wont do it at all) because it's complicated, but 
if you think it through, everything will be ok. Let's think about what we need: 

• Means of males and females at each site (latitude) on each continent. 

• Standard errors for each of the above. 
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• Plots of the means as a function of latitude, with unique symbols for each subset of the 
data. 

• Error bars for each of the means. 

• The regression lines for each subset of the data. 

OK, lets do it. (Hey, the following block of text is in "prettypie.r", but make sure you know what 
you are doing! 

 
tmp1<-aggregate(flies$WL, list(flies$Cont, flies$Lat, flies$Sex), 
                mean) 
tmp2<-aggregate(flies$WL, list(flies$Cont, flies$Lat, flies$Sex), 
                function(x) sqrt(var(x)/length(x))) 
flies.sum<-cbind(tmp1, tmp2$x) 
names(flies.sum)<-c("Cont", "Lat", "Sex", "WL.m", "WL.se") 
flies.sum$Lat<-as.numeric(as.character(flies.sum$Lat)) 
#Note that aggregate() changed my latitudes into factors. 
#I need to change them back into numbers and that is how ya do it. 
#Now, get subsets of both the summary data and the original data! 
fs.eu.f<-flies.sum[flies.sum$Cont=="Eur" & flies.sum$Sex=="F",] 
fs.eu.m<-flies.sum[flies.sum$Cont=="Eur" & flies.sum$Sex=="M",] 
fs.na.f<-flies.sum[flies.sum$Cont=="NoA" & flies.sum$Sex=="F",] 
fs.na.m<-flies.sum[flies.sum$Cont=="NoA" & flies.sum$Sex=="M",] 
f.eu.f<-flies[flies$Cont=="Eur" & flies$Sex=="F",] 
f.eu.m<-flies[flies$Cont=="Eur" & flies$Sex=="M",] 
f.na.f<-flies[flies$Cont=="NoA" & flies$Sex=="F",] 
f.na.m<-flies[flies$Cont=="NoA" & flies$Sex=="M",] 
 
X11(width=10, height=8, pointsize=24) 
par(mar=c(5,5,1,1)) 
plot(flies$Lat, flies$WL, type="n", axes=F, ylim=c(2.1,2.6),  
     xlab="Latitude", ylab="Wing Length (mm)", cex.lab=1) 
axis(1, cex.axis=.75) 
axis(2, cex.axis=.75, las=1) 
#First, the error bars (because I want them behind the points...) 
arrows(fs.eu.f$Lat, fs.eu.f$WL.m-2*fs.eu.f$WL.se, 
         fs.eu.f$Lat, fs.eu.f$WL.m+2*fs.eu.f$WL.se, 
         code=3, length=0.1, angle=90) 
arrows(fs.eu.m$Lat, fs.eu.m$WL.m-2*fs.eu.m$WL.se, 
         fs.eu.m$Lat, fs.eu.m$WL.m+2*fs.eu.m$WL.se,  
         code=3, length=0.1, angle=90) 
arrows(fs.na.f$Lat, fs.na.f$WL.m-2*fs.na.f$WL.se, 
         fs.na.f$Lat, fs.na.f$WL.m+2*fs.na.f$WL.se,  
         code=3, length=0.1, angle=90) 
arrows(fs.na.m$Lat, fs.na.m$WL.m-2*fs.na.m$WL.se, 
         fs.na.m$Lat, fs.na.m$WL.m+2*fs.na.m$WL.se,  
         code=3, length=0.1, angle=90) 
#Now the points... 
points(fs.eu.f$Lat, fs.eu.f$WL.m, pch=21, col="black", bg="white") 
points(fs.eu.m$Lat, fs.eu.m$WL.m, pch=24, col="black", bg="white") 
points(fs.na.f$Lat, fs.na.f$WL.m, pch=16, col="red") 
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points(fs.na.m$Lat, fs.na.m$WL.m, pch=17, col="red") 
#Finally, the regression lines. 
abline(lm(WL~Lat, data=f.eu.f), col="black", lwd=4, lty=5) 
abline(lm(WL~Lat, data=f.eu.m), col="black", lwd=4, lty=5) 
abline(lm(WL~Lat, data=f.na.f), col="red", lwd=4) 
abline(lm(WL~Lat, data=f.na.m), col="red", lwd=4) 
 

WOW. Does that look nice! Only one thing wrong and that is that the regression lines extend too 
far beyond the data. That, in this case, is "unwarranted extrapolation" as we really have no idea 
what takes place beyond the boundaries of the samples. That is not too hard to fix, but requires 
more understanding of regression than we have at the moment. You can see the "official" version 
of this figure (ln transformed WL) in the Science paper. 

 

7.3 Correlations between multiple dependent variables 

7.3.1 Visualizing the correlation structure. 

One might think about analyzing L1, L2, and W as if they were three independent measures, but 
they may in fact be highly correlated. This would mean that you really have less than three 
variables, but how much less? Let's take a look at the pattern of correlation among the three 
measures on the wing. 

 
pairs(flies[,6:8]) 

This plots all possible pairs of the three variables. Look kind of correlated to me… And there is 
something else you might note. More later… You can do some very fancy stuff with this 
function because, like xyplot(), it has some panel functions that you can customize or make 
up. Note that I copied and modified most of this from one of the help files. I do not, necessarily, 
really know what every little thing does.  

 
> ## put histograms on the diagonal 
> panel.hist <- function(x, ...) 
+ { 
+     usr <- par("usr"); on.exit(par(usr)) 
+     par(usr = c(usr[1:2], 0, 1.5) ) 
+     h <- hist(x, plot = FALSE) 
+     breaks <- h$breaks; nB <- length(breaks) 
+     y <- h$counts; y <- y/max(y) 
+     rect(breaks[-nB], 0, breaks[-1], y, col="lightblue", ...) 
+ } 
> pairs(flies[,6:8], diag.panel=panel.hist) 
> 

Now, we can modify the lower triangle to produce a smoothing plot using a modification of one 
of the built-in panel functions. A loess regression is a smoothing technique that implements a 
sliding window across the range of your data to compute a local regression slope. It shows 
general trends in the data and looks nice, too. The span= parameter controls how big the 
window is (bigger means more smoothing). 
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> panel.lowess<-function(x,y, ...)  
                          panel.smooth(x, y, pch=".", span=2/3, ...) 
> pairs(flies[,6:8],diag.panel=panel.hist, lower.panel=panel.lowess) 
>  

So, all of our variables are correlated; what are we to do? Clearly we cannot analyze them as if 
they were independent; they all represent different measures of some common thing. What we 
need to do is to reduce the dimensions and combine these to make some independent variables. 
The technique is principal components analysis; it takes your n correlated variables and 
transforms them through the magic of linear algebra into n orthogonal, and therefore 
independent, variables. Often, most of the variance will be explained by only one or two, so you 
can simply omit the rest. This is called “dimension reduction” in the data crunching world. 

 

7.3.2 Principal components analysis 

If you know what eigenvectors are, then 
the first principal component is simply the 
first eigenvector, the second is the second 
eigenvector, etc. for a system of n data 
dimensions. If you do not know what 
eigenvectors are, then consider Dr. G's 
brilliant, yet superficial, explanation... 

A principal components analysis takes a 
set of n correlated variables and creates 
linear combinations of the two variables to 
arrive at a new set of n orthogonal 
variables. To see what happens, let's just 
thing about two of our three wing 
measures, L1 and L2 (because drawing a 
two dimensional picture is easier than 
drawing a three dimensional picture). 
These are plotted at the right (scaled to a 
mean = 0 and standard deviation = 1) and 
the correlation should be pretty obvious. 
PCA essentially finds THE line (shown in 
red) through these points that explains 
most of the variance: 

PC1 = aL1 + bL2  

where a and b are coefficients (the eigenvector!). That effect is subtracted from the data and the 
next (in this case, final) principal component is computed (shown in blue) orthogonal to the first. 
There are always as many principal components as there are variables going into the analysis. 
One normally one rescales the data so that the two variables have equal means and variances 
(i.e., a z-transform is done on each variable). More on this in a minute… 
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So the plot immediately at left is of the 
principal components and shows the axes of 
the original variables. Are PC1 and PC2 
correlated? I hope you can see the answer is 
NO! We started out with two highly 
correlated variables. We now have two 
uncorrelated variables that are composed of 
linear combinations of our original 
variables. Whether or not these new 
variables have biological meaning is 
something you will have to determine. 
There are some general rules for size 
measures, however. The first principal 
component is always overall size. It reflects 
every part of the organism that you 
measured, and so is generally a much better 
index of size than any one character measurement. The second PC will show the biggest trade-
off. That is, when some characters get large, others get small. This may reflect an allocation 
constraint. Third and higher? You are on your own for understanding them!  Here is the 
commands we used for the simple PC analysis: 
 
> tmp1<-prcomp(flies[,6:7], scale=T) 

The "scale=T" parameter in prcomp() makes the function scale the original variables to 
standard deviations. The reason for this is because we may be computing a set of variables that 
are all correlated, but are on very different scales. For example, we might have wing lengths all 
around 2 mm and masses all around 1000 µg; the arithmetic would make the masses count about 
500X more than the wing lengths UNLESS they were rescaled. Ask if this does not make sense 
to you! 

So, let's compute the principal components for our three wing measures and see what the whole 
analysis looks like. I will add the PC scores (that is, the values of PC1, PC2, and PC3) to the 
original data.frame so that we can plot them easily. 
 
> tmp1<-prcomp(flies[,6:8], scale=T) 
> tmp1$rotation 
          PC1        PC2        PC3 
L1 -0.5770373 -0.5811190 -0.5738716 
L2 -0.5556115  0.7943178 -0.2456727 
W  -0.5986015 -0.1770874  0.7812274 
> summary(tmp1) 
Importance of components: 
                         PC1   PC2    PC3 
Standard deviation     1.603 0.563 0.3383 
Proportion of Variance 0.856 0.106 0.0382 
Cumulative Proportion  0.856 0.962 1.0000 
> tmp2<-as.data.frame(tmp1$x) 
> names(tmp2)<-c("PC1", "PC2", "PC3") 
> flies<-cbind(flies[,1:10], tmp2) 
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Well, that's a lot of stuff. What does it all mean? First, the rotation (also known as the loadings) 
are the coefficients of the equation combining L1 L2, and W. These are the coefficients of the 
eigenvector, for you math types. Note that all three variables load negatively on PC1. The signs 
within a column are arbitrary; what matters is their relation to each other. For PC1, all three 
original variables have the same sign, that is, all have the same directional effect on PC1. Hence 
PC1 is simply a new measure of size that combines all three measurements. If we are disturbed 
that our biggest flies have large negative values (as is the case here), we can (and will) just 
multiply the PC scores by -1.  
 
> flies<-cbind(flies[,1:10], -tmp2) 

Note that PC2 shows a negative loading for L1 and W, but a positive for L2. That means that 
PC2 measures how much bigger L2 gets when L1 and W get smaller. PC3 measures how much 
narrower the wing gets as L1 and L2 get longer. How important are each of these? Look at the 
summary(). The standard deviations are the eigenvalues for you math phenotypes. The 
important line is the second, the proportion of variance explained. Note that PC1 explains 86% 
of the variation in L1, L2, and L3; we have a very good measure of overall wing size. PC2 
explains about 10% of the variance, so there is some kind of a trade-off between L2 and the other 
wing dimensions. PC3 explains less than 4% of the variance and so we will ignore it! 

 

7.3.3 Graphing the PC's 

The principal components scores are just new variables and so we can treat them like anything 
other variable. So, let's go back and look at some of the stuff we looked at earlier. First, let's see 
if we have gotten rid of the correlations between the variables. 

 
> pairs(flies[,11:13]) 

Hmmm... you can almost see a couple of clusters of points in PC1. Anyone want to guess why? 
let's look with our fancier version of pairs() that shows the histograms and the lowess curves. 

 
> pairs(flies[,11:13], diag.panel=panel.hist,   
                       lower.panel=panel.lowess) 

Nice, huh? (Professors like some pretty weird stuff... ) 

Now, how about our xyplot() for PC1: 

 
xyplot(flies$PC1~flies$Lat|flies$Sex*flies$Cont, 
       panel=function(x,y, ...){ 
         panel.xyplot(x, y, pch=16) 
         panel.xyplot(x, y, type="r", col="red", lwd=2) 
         } 
       ) 

Isn't that nice? What can you say from this plot about the relationship between size and latitude? 
For males and females? For North America and Europe? 
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Now let's look at PC2: 

 
> xyplot(flies$PC2~flies$Lat|flies$Sex*flies$Cont, 
+        panel=function(x,y, ...){ 
+          panel.xyplot(x, y, pch=16) 
+          panel.xyplot(x, y, type="r", col="red", lwd=2) 
+          } 
+        ) 
> 

Isn't that nice, but different from PC1? What can you say from this plot about the relationship 
between PC2 and latitude? For males and females? For North America and Europe? That’s for 
you to do in the exercises this week. 

 

Exercises 
1. Create publication quality graphs for PC1, PC2, and PC3 (like we did for wing length) all on 
one page. Interpret what you see and present a brief, intelligent explanation of what all this 
means. 

2, Consider the pheasants in “pheasantsData.txt”. There are three morphological measurements 
in this dataset. Are the correlated? Do a pairs plot… Compute principal components and do some 
graphing. What do the PC’s represent? Is there an effect of sex or parasite treatment on any of 
the PCs? 
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Chapter 8 

Regression Analysis I 
 

8.1 Lines 
So far, we have been groping our way towards putting a number, a P value, on whether or not 
two or more groups of things are really different from each other. A totally different question is 
how two continuous variables relate to one another. How does an increase in the dosage of a 
drug affect red blood cell count? If precise information on drug titer is required, we might set up 
trials with a wide range of doses administered to laboratory mice, and then a sampling of the 
RBCs of those mice at some point in time. What we would be interested in is the relationship 
between these two continuous variables, which could be described by a line through a bunch of 
dots on a graph. The line is described by the linear equation: 

! 

Y = a + bX  (8.1) 

Given two points, (4,6) and (2,3) in xy space, what is the slope of the line that passes through 
both? What is the y-intercept? If we have a large number of points scattered about a hypothetical 
line, what is their slope and intercept? The technique for fitting these lines is known as linear 
regression. Consider the graphs below. Which one has a positive slope? A negative slope? A 
slope of about zero? 

 

With more than two points, it is a little trickier. Let’s look at the freshman GPA of a bunch of 
young folks as a function of their SAT scores. It is not a very impressive relationship… 
 SAT frosh 
 510 3.25 
 558 2.00 
 569 2.75 
 581 3.25 
 603 3.75 
 612 2.25 
 618 2.50 
 633 2.75 
 643 2.75 
 651 3.75 
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8.2 Calculating the regression line 
Speaking in tongues: S&R terminology 

Dependent data point Y 

Mean of dependent data 

! 

Y  
Deviate of dependent & independent variables 

! 

y = Y "Y ,x = X " X  

Sum of squares (total) 

! 

y
2"  

Regression coefficient (slope) 

! 

b  or  b
Y "X

 

Y intercept a 

Expectation of Y 

! 

ˆ Y = a + bX  
Deviation from line (residual) 

! 

d
Y "X = Y # ˆ Y  

Squared residuals 

! 

d
Y "X

2  

Residual sum of squares 

! 

d
Y "X
2#  

Products 

! 

x " y  

Sum of Products 

! 

xy"  

Total variation (df = n-1) 

! 

sy
2

= y
2" (n #1)  

Residual variation (df = n-2) 

! 

s
Y "X
2

= d
Y "X
2# (n $ 2)  

Regression (explained) variation (df = 1) 

! 

s
ˆ Y 

2 = ˆ Y "Y ( )#
2
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8.2.1 Calculating the slope and intercept 

Verbally: 

1. Line goes through 

! 

X ,Y ( ), so you need to compute the means 

2. Calculate the deviations (distance from the mean for each X and Y values. 

3. Calculate the squares of the X deviations, x2 and their sum, 

! 

x
2" . 

4. Calculate the product of the deviations for each data point (sum of products) 

5. Slope (aka the regression coefficient) is the sum of products divided by the sum of the X 
deviations. 

The punch line: 

 

! 

b =
X " X ( ) Y "Y ( )#

X " X ( )
2

#
 (8.2) 

where the numerator is the sum of products (step 4) and the denominator is the sum of X deviates 
(step 3). 

To compute the intercept, we solve for a: 

 

! 

Y = a + bX 

a = Y " bX 

 (8.3) 

Let’s try this out in R! 
 
> SAT<-c(510,558,569,581,603,612,618,633,643,651) 
> frosh<-c(3.25,2.00,2.75,3.25,3.75,2.25,2.50,2.75,2.75,3.75) 
> dev.x<-SAT-mean(SAT) 
> dev.y<-frosh-mean(frosh) 
> dev.x.sq<-dev.x^2 
> products<-dev.x*dev.y 
> b<-sum(products)/sum(dev.x.sq) 
> b 
[1] 0.001387464 
> #That's the regression coefficient (the slope) 
> a<-mean(frosh)-b*mean(SAT) 
> a 
[1] 2.070574 
> #That's the intercept 
> grades<-cbind(SAT, frosh, dev.x, dev.y, dev.x.sq, products) 
> grades 
      SAT frosh dev.x dev.y dev.x.sq products 
 [1,] 510  3.25 -87.8  0.35  7708.84   -30.73 
 [2,] 558  2.00 -39.8 -0.90  1584.04    35.82 
 [3,] 569  2.75 -28.8 -0.15   829.44     4.32 
 [4,] 581  3.25 -16.8  0.35   282.24    -5.88 
 [5,] 603  3.75   5.2  0.85    27.04     4.42 
 [6,] 612  2.25  14.2 -0.65   201.64    -9.23 
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 [7,] 618  2.50  20.2 -0.40   408.04    -8.08 
 [8,] 633  2.75  35.2 -0.15  1239.04    -5.28 
 [9,] 643  2.75  45.2 -0.15  2043.04    -6.78 
[10,] 651  3.75  53.2  0.85  2830.24    45.22 
> 

 
Would you be surprised to learn that there was an easy way to do this? I guess not. It is the lm() 
function. lm stands for “linear model”. In fact, the function aov() actually calls lm() to 
compute the anova.  
 
> lm(frosh~SAT) 
 
Call: 
lm(formula = frosh ~ SAT) 
 
Coefficients: 
(Intercept)          SAT   
   2.070574     0.001387   
 
> summary(lm(frosh~SAT)) 
#Here is the picture from page 1 of the lab. 
> plot(SAT, frosh, xlab="SAT", ylab="Freshman GPA", cex.lab=1.2, 
las=1) 
> abline(lm(frosh~SAT)) 
 

Notice there are two coefficients, the Y-intercept and the regression coefficient (slope), which is 
labeled with the variable name. This is done because in multiple regression, there can be more 
than one independent variable and each one will have its own slope. For instance, if we really 
wanted to understand the freshman psyche and improve our ability to predict performance, as 
measured by freshman GPA, we might include other continuous variables in addition to SAT 
scores, such as parental income, diet quality (something like 1/number of Top Ramens per 
week), cans of beer consumed per semester, and average number of hours sleep per week. We 
could get an estimate of the slope, the relationship between each of these variables and the GPA. 
 
8.2.2 Significance of the regression 
 
Verbally:  

1. Calculate the expected Y’s: 

! 

ˆ Y = a + bX  
2. Calculate the residuals: 

! 

d
Y "X = Y # ˆ Y  (the sum is zero) 

3. Calculate the squares of the residuals, 

! 

d
Y "X

2  
4. Sum the squares of the residuals and divide by the degrees of freedom (n-2), to get the 

unexplained variation: 

! 

s
Y "X

2 . 
5. The standard error of the regression coefficient, sb, is the square root of 

! 

s
Y "X

2  divided by 

the sum of the squared deviations of X, 

! 

x
2"  

6. Get a ts score by dividing the difference between the regression coefficient and the null 
hypothesis slope (often zero) by the standard error of the regression coefficient. The 
slopes of regression lines follow the t distribution with df = n – 2.  
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Punch line: 

 

! 

s
b

=
s
Y "X
2

x
2#

 (8.4) 

Null hypothesis: b = β: 

 

! 

t
s
=
b "#

s
b

 (8.5) 

 
The critical values can be obtained from a t-table or from R using pt(). Two-tailed tests (b ≠ β) 
or one-tailed tests (b < β or b > β) are all allowed. Recall that pt(t, df, lower.tail=F) 
will give you the one tailed probability. Here is an example in R: 
 
> y.exp<-a + b*SAT 
> y.resid<-frosh-y.exp 
> y.resid.sq<-y.resid^2 
> unexp.var<-sum(y.resid.sq)/(length(SAT)-2) 
> s.b<-sqrt(unexp.var/sum(dev.x.sq)) 
> s.b 
[1] 0.004765893 
> t.s<-b/s.b 
> t.s 
[1] 0.2911236 
> grades<-cbind(grades, y.exp, y.resid, y.resid.sq) 
> grades 
      SAT frosh dev.x dev.y dev.x.sq products    y.exp    y.resid y.resid.sq 
 [1,] 510  3.25 -87.8  0.35  7708.84   -30.73 2.778181  0.4718193 0.22261348 
 [2,] 558  2.00 -39.8 -0.90  1584.04    35.82 2.844779 -0.8447789 0.71365145 
 [3,] 569  2.75 -28.8 -0.15   829.44     4.32 2.860041 -0.1100410 0.01210903 
 [4,] 581  3.25 -16.8  0.35   282.24    -5.88 2.876691  0.3733094 0.13935990 
 [5,] 603  3.75   5.2  0.85    27.04     4.42 2.907215  0.8427852 0.71028687 
 [6,] 612  2.25  14.2 -0.65   201.64    -9.23 2.919702 -0.6697020 0.44850075 
 [7,] 618  2.50  20.2 -0.40   408.04    -8.08 2.928027 -0.4280268 0.18320692 
 [8,] 633  2.75  35.2 -0.15  1239.04    -5.28 2.948839 -0.1988387 0.03953684 
 [9,] 643  2.75  45.2 -0.15  2043.04    -6.78 2.962713 -0.2127134 0.04524698 
[10,] 651  3.75  53.2  0.85  2830.24    45.22 2.973813  0.7761869 0.60246614 
> #significance test for t.s 
> #want upper tail (is bigger) X 2 
> pt(t.s, length(SAT)-2, lower.tail=F)*2 
[1] 0.778 
> 

 
A complete summary of the regression analysis can be obtained by (guess what…) summary().  
 
> summary(lm(frosh~SAT)) 
 
Call: 
lm(formula = frosh ~ SAT) 
 
Residuals: 
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    Min      1Q  Median      3Q     Max  
-0.8448 -0.3742 -0.1544  0.4472  0.8428  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) 2.070574   2.855880   0.725    0.489 
SAT         0.001387   0.004766   0.291    0.778 
 
Residual standard error: 0.6242 on 8 degrees of freedom 
Multiple R-Squared: 0.01048, Adjusted R-squared: -0.1132  
F-statistic: 0.08475 on 1 and 8 DF,  p-value: 0.7784  
> 

 
A number of additional statistics are presented here, including the R2 (the proportion of variance 
explained), the anova test for significance of the overall model, and tests of slope and intercept 
being different from zero.  
 

8.3 Another example: wing length of nesting sparrows 
 
> age<-c(3,4,5,6,8,9,10,11,12,14,15,16,17) 
> WL<-c(1.4, 1.3, 2.4, 2.6, 4.3, 3.6, 6.3, 8.3, 6.0, 8.5,11.2, 9.2, 
8.6) 
> dev.x<-age-mean(age) 
> dev.y<-WL-mean(WL) 
> dev.x.sq<-dev.x^2 
> products<-dev.x*dev.y 
> sparrow<-data.frame(age,WL, dev.x, dev.y, dev.x.sq, products) 
> b <- sum(products)/sum(dev.x.sq) 
> b 
[1] 0.6622137 
> a<-mean(WL)-b*mean(age) 
> a 
[1] -0.9529066 
> y.exp<-a + b*age 
> resid.y <- WL-y.exp 
> resid.y.sq<-resid.y^2 
> sparrow<-cbind(sparrow, resid.y, resid.y.sq) 
> sparrow 
   age   WL dev.x      dev.y dev.x.sq   products     resid.y  resid.y.sq 
1    3  1.4    -7 -4.2692308       49 29.8846154  0.36626541 0.134150353 
2    4  1.3    -6 -4.3692308       36 26.2153846 -0.39594833 0.156775077 
3    5  2.4    -5 -3.2692308       25 16.3461538  0.04183793 0.001750413 
4    6  2.6    -4 -3.0692308       16 12.2769231 -0.42037581 0.176715819 
5    8  4.3    -2 -1.3692308        4  2.7384615 -0.04480329 0.002007335 
6    9  3.6    -1 -2.0692308        1  2.0692308 -1.40701703 1.979696919 
7   10  6.3     0  0.6307692        0  0.0000000  0.63076923 0.397869822 
8   11  8.3     1  2.6307692        1  2.6307692  1.96855549 3.875210718 
9   12  6.0     2  0.3307692        4  0.6615385 -0.99365825 0.987356718 
10  14  8.5     4  2.8307692       16 11.3230769  0.18191427 0.033092801 
11  15 11.2     5  5.5307692       25 27.6538462  2.21970053 4.927070436 
12  16  9.2     6  3.5307692       36 21.1846154 -0.44251321 0.195817943 
13  17  8.6     7  2.9307692       49 20.5153846 -1.70472695 2.906093982 
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> SS.resid<-sum(resid.y.sq)/(length(resid.y.sq)-2) 
> SS.resid 
[1] 1.433964 
> SE.resid<-sqrt(SS.resid/sum(dev.x.sq)) 
> SE.resid 
[1] 0.07398072 
> t.s<-b/SE.resid 
> t.s 
[1] 8.951167 
> pt(t.s, length(age)-2, lower.tail=F)*2 
[1] 2.210697e-06 
>  
> #now, the easy way... 
>  
> tmp1<-lm(WL~age, data=sparrow) 
> summary(tmp1) 
 
Call: 
lm(formula = WL ~ age, data = sparrow) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.7047 -0.4425 -0.0448  0.3663  2.2197  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.95291    0.81094  -1.175    0.265     
age          0.66221    0.07398   8.951 2.21e-06 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 1.197 on 11 degrees of freedom 
Multiple R-Squared: 0.8793, Adjusted R-squared: 0.8683  
F-statistic: 80.12 on 1 and 11 DF,  p-value: 2.211e-06  
 
> plot(age, WL, pch=16) 
> lines(age, predict(tmp1), lwd=3) 

 
Does this look good to you? Recall our emphasis on the assumptions of regression. R provides a 
very nice set of diagnostic graphs for a regression model. If you examine help(plot.lm), you 
can learn some details. First. please look at the help file. These files are not going to teach you 
statistics, however they do provide important information about what the functions provide. Pay 
particular attention to the “Details” section.  Once you have read the file, take a look at the plots: 
 
> plot(tmp1) 

 

8.4 Polynomial regression 
 
Sometimes your Y variable will look like a polynomial function of X. For example, in the 
following data set, somebody measured the tarsus length of a bunch of pigeons and then 
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measured their overall body mass. Clearly you would expect birds with long tarsi (what’s a 
tarsus?) to be bigger overall, right? And so they are! 
 
> pigeon<-read.table("pigeonData.txt", h=T) 
> summary(pigeon) 
     Tarsus           Mass       
 Min.   : 5.05   Min.   :140.9   
 1st Qu.: 8.87   1st Qu.:247.1   
 Median :12.50   Median :309.6   
 Mean   :12.44   Mean   :331.4   
 3rd Qu.:16.05   3rd Qu.:394.4   
 Max.   :19.98   Max.   :601.3   
> plot(pigeon$Tarsus, pigeon$Mass, pch=16) 

 

 
 
Well, that sure does not look like a straight line. You have several options at this point. The one 
we will explore is polynomial regression. First, just for fun, let’s fit a straight line to the data and 
see how it looks.  
 
 
 
 
> tmp1 <- lm(Mass~Tarsus, data=pigeon) 
> summary(tmp1) 
 
Call: 
lm(formula = Mass ~ Tarsus, data = pigeon) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-182.445  -32.834    2.948   37.679  129.002  
 
Coefficients: 
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            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   70.522     15.157   4.653 7.51e-06 *** 
Tarsus        20.969      1.154  18.175  < 2e-16 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 58.12 on 140 degrees of freedom 
Multiple R-Squared: 0.7023, Adjusted R-squared: 0.7002  
F-statistic: 330.3 on 1 and 140 DF,  p-value: < 2.2e-16  
 
> tmp2<-data.frame(Tarsus=seq(min(pigeon$Tarsus),    
        max(pigeon$Tarsus), length=100)) 
> lines(tmp2$Tarsus, predict(tmp1, newdata=tmp2)) 
 

That’s not really that bad. The variance explained (R-squared) is about 70%. Please note the last 
couple of lines. I want to draw a line on my scatterplot, but I DO NOT want that line to extend 
beyond my data because we all agree that that is not a good extrapolation. The function 
predict(lmObject) will produce the 

! 

ˆ Y s for my line over exactly the range of the original X 
values. These are also know as the fitted values or the expectations. The other thing you will note 
is that I called predict() with the newdata argument. I created a data.frame with one column, 
named the same thing as the X variable in my model, with 100 equally spaces points spanning 
the range of tarsus lengths. The call to predict() gives me 100 new 

! 

ˆ Y s. Not important now, but 
when I start to draw curved lines, this will be handy. I am planning ahead, as you should… 
 
I think that we could get a better fit if we used a curved line rather than a straight one. Let’s try a 
second order polynomial: 
 
 

! 

Y = a + b
1
X + b

2
X
2

+ "  (8.6) 
 
You might assume that you could just type this into a formula and call it with lm() that that 
everything would be hunky-dorey. You would be wrong. First, R knows that you cannot do this, 
so if you enter lm(Mass~Tarsus+Tarsus^2, data=pigeon)). it just ignores the squared 
term. We are going to have to trick the program by creating a new variable with the squared 
values before we do the regression. I have added cor=T to get a correlation matrix so you can 
see what’s wrong with this approach.  
 
> pigeon$T2<-pigeon$Tarsus^2 
> tmp1a <- lm(Mass~Tarsus+T2, data=pigeon) 
> summary(tmp1a, cor=T) 
Call: 
lm(formula = Mass ~ Tarsus + T2, data = pigeon) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-150.946  -32.049    4.996   32.334  133.055  
 
  
 
Coefficients: 
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            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 338.1433    36.4852   9.268 3.24e-16 *** 
Tarsus      -27.3641     6.2538  -4.376 2.36e-05 *** 
T2            1.9328     0.2471   7.822 1.17e-12 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 48.6 on 139 degrees of freedom 
Multiple R-Squared: 0.7933, Adjusted R-squared: 0.7904  
F-statistic: 266.8 on 2 and 139 DF,  p-value: < 2.2e-16  
 
Correlation of Coefficients: 
       (Intercept) Tarsus 
Tarsus -0.98              
T2      0.94       -0.99  
 
> tmp2$T2<-tmp2$Tarsus^2   
> #I had to add this to my “newdata” data.frame so that both variables 
are there.  
> lines(tmp2$Tarsus, predict(tmp1a, newdata=tmp2), col="blue") 

 
The good news is that the variance explained (R-squared) is up to 79%. And we draw a cool blue 
line on the figure (that’s my favorite part of this exercise). Note I used my earlier “newdata” 
variable to get new squared values; both “Tarsus” and “T2” were in the formula call to lm(). I 
need these to get my new

! 

ˆ Y s. 
 
The bad news: the coefficient for Tarsus is negative. I think we can all agree that birds with 
bigger tarsi are larger, not smaller. Mass clearly increases with tarsus length, yet this analysis 
says it decreases. If you look at the correlations, you can see what the problem is. As you might 
have guessed, tarsus and tarsus squared are nearly perfectly correlated. IF THERE ARE 
STRONG CORRELATIONS AMONG VARIABLES IN REGRESSION, YOUR RESULTS 
ARE GARBAGE. Sorry to shout, but this is very important.  
 
In this case, we have an out, because there is a technique, known as orthogonal polynomials, that 
removes the correlation from the successive terms of a polynomial expansion. Note that this only 
works for polynomials. If you have independent variables that are correlated, you must use 
something like principal components analysis to create orthogonal variables before you do your 
regressions. Like PCA, this is a rescaling of the X and X2 terms into orthogonal and independent 
linear and quadratic components. What we will gain from this analysis is an appreciation of how 
much the linear versus the quadratic term affects our data. Notice that the fitted line is the same, 
however the regression table is very different. 
 
> tmp1b<-lm(Mass~poly(Tarsus, 2), data=pigeon) 
> summary(tmp1b) 
 
Call: 
lm(formula = Mass ~ poly(Tarsus, 2), data = pigeon) 
 
Residuals: 
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     Min       1Q   Median       3Q      Max  
-150.946  -32.049    4.996   32.334  133.055  
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)       331.352      4.079  81.240  < 2e-16 *** 
poly(Tarsus, 2)1 1056.340     48.603  21.734  < 2e-16 *** 
poly(Tarsus, 2)2  380.188     48.603   7.822 1.17e-12 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 48.6 on 139 degrees of freedom 
Multiple R-Squared: 0.7933, Adjusted R-squared: 0.7904  
F-statistic: 266.8 on 2 and 139 DF,  p-value: < 2.2e-16  
 
> lines(tmp2$Tarsus, predict(tmp1b, newdata=tmp2), col="red") 

 
The linear (first order) term has a much stronger effect (larger coefficient) than the second order 
quadratic term.  
 

 
Exercises 
 

1. Using the data from the file lizardData.txt, do  a regression of SVL as the independent 
variable and Mass and the dependent variable. Do this without lm(). 

a. calculate the regression line 
b. calculate the t-value of the regression line to test a hypothesis that you will state. 
c. verify your results with lm(). 

2. Regress trail fat score (TFS) on condition 

! 

Mass

SVL

" 

# 
$ 

% 

& 
'  using lm(). Assume that condition 

is the independent variable and use a two-tailed test.  
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Chapter 9 

Multiple regression, ANCOVA, and other linear models 
 

In the lab today, we will use some of the material out of Dalgaard, Chapters 9 and 10.  The 
datasets are in an external library that you will (hopefully) be able to download and install. Go to 
“Packages & Data: Package Installer”. Hit the “Get List” button and find ISwR. Make sure the 
“At User Level” radio button is pushed at the bottom of the installer window. And install! You 
can mount the library with library(ISwR) and with that, everything should be peachy. 

In chapter 9, work through 9.1, 9.2, 9.3. Use the help files and/or the data descriptions in the 
back of Dalgaard to help you interpret the data. 

For Chapter 10, skip 10.1 and 10.6. Work through sections 10.2, 10.3, 10.4, 10.5, 10.7, and 10.8.  

 

Exercises  
9.1  

9.3 To extend exercise 9.3, do a principal components analysis with height, weight, bmp, fev1, 
rv, frc and tlc (be sure to scale these so that differences in loading are not simply due to 
differences in dimensions). Do any of the PC’s affect maximum expiratory pressure 
(pemax)? Can you make a biological interpretation?  

10.5 
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Chapter 10: Correlation 
 

10.1 Correlation 
 
In Chapter 8 we examined the relationship between freshman grades and SAT scores. What we 
got from regressing one of these variables upon the other was an equation that predicted the one 
score from the other. What regression did not tell us was how good our prediction was. That is to 
say, how much of the variation in freshman scores is accounted for by variation in SAT scores? 
What proportion of the variation in our dependent variable, Y, can we explain with our 
independent variable X? Or, put another way, how tightly do our data match our regression line? 
A second issue is the causation implied by the regression. Do low SAT scores cause low 
freshman grades or are both caused by some other set of unmeasured factors? If all we want to 
do is predict freshman grades, then there is nothing wrong with using a regression. If we wish to 
make an inference about causation, then we are in deep doo-doo. 
 

The quantitative measure of the quality of our regression is called a correlation. 
 
10.1.1 Pearson's product-moment correlation, r 
 
The standard measure of this is the correlation coefficient, r. The correlation coefficient has the 
property that, when squared, it tells us the proportion of the variation in once variable that is due 
to variation in the second. This is R2, the coefficient of determination we encountered in 
regression. 
 
Calculating r is fairly straightforward. Recall from last chapter that x is the vector of our X-
deviates 

! 

(X " X )and y is the vector of Y-deviates 

! 

(Y "Y ) . So 

! 

x
2"  is the sum of squared X-

deviates, and 

! 

xy"  is the sum of products we used in the calculation of the regression line and 

its significance. 
 

 

! 

r =
xy"

x
2" " y

2

 (10.1) 

 
Where we left things off a couple of weeks ago: 
 
> SAT<-c(510,558,569,581,603,612,618,633,643,651) 
> frosh<-c(3.25,2.00,2.75,3.25,3.75,2.25,2.50,2.75,2.75,3.75) 
> dev.x<-SAT-mean(SAT) 
> dev.y<-frosh-mean(frosh) 
> dev.x.sq<-dev.x^2 
> products<-dev.x*dev.y 
> dev.y.sq<-dev.y^2  
Computing the product-moment correlation the long way in R: 
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> r <- sum(products)/sqrt(sum(dev.x.sq)*sum(dev.y.sq)) 
> r 
[1] 0.1023868 

 

10.1.2 Significance of a correlation 
 
Given the correlation coefficient, we can calculate a t statistic for use in significance testing. This 
t statistic will be identical to that obtained from a significance test of the regression (see Chapter 
8). First we need the standard error of the regression, and then the t statistic 
 

  

! 

s
r

=
1" r

2

n " 2
 (10.2) 

 

! 

t
s
=
r

s
r

 (10.3) 

 
with df = n - 2 where n is the number of pairs of observations. 
 
> se.r<-sqrt((1-r^2)/(length(SAT)-2)) 
> se.r 
[1] 0.3516953 
> t.s<-r/se.r 
> t.s 
[1] 0.2911236 
> pt(t.s, length(SAT)-2, lower.tail=F)*2  #for a two-tailed test... 
[1] 0.778362 

 
Of course, there is an easy way in R 
 
> cor.test(frosh, SAT) 
 
 Pearson's product-moment correlation 
 
data:  frosh and SAT  
t = 0.2911, df = 8, p-value = 0.7784 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 -0.5635703  0.6876814  
sample estimates: 
      cor  
0.1023868  

 
Given the paucity of data, one might question whether or not any conclusions can be drawn from 
this dataset. One might also question the assumption of bivariate normality, however since the 
null hypothesis cannot be rejected, we will just let Mr. Pearson have his way here. One of the 
nonparametric correlations would probably be a better option 
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10.2 Another example of correlation analysis 
 
In S&R’s chapter on correlation, Box 15.7 includes data about the sizes of aphid stem mothers 
and their kids. Here are the data: 
 
>Mom<-c(8.7,8.5,9.4,10.0,6.3,7.8,11.9,6.5,6.6,10.6,10.2,7.2, 
+       8.6,11.1,11.6) 
> Kid<-c(5.95,5.65,6.00,5.70,4.70,5.53,6.40,4.18,6.15,5.93, 
+        5.70,5.68,6.13,6.30,6.03) 
> plot(Mom, Kid, pch=16) 
 

Let's look first at the regression of kids on their mums: 
 
> tmp1<-lm(Kid~Mom) 
> summary(tmp1) 
 
Call: 
lm(formula = Kid ~ Mom) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.04365 -0.23874  0.04027  0.22943  0.90588  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.89328    0.60874   6.396 2.36e-05 *** 
Mom          0.20467    0.06631   3.087  0.00867 **  
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 0.4652 on 13 degrees of freedom 
Multiple R-Squared: 0.4229, Adjusted R-squared: 0.3785  
F-statistic: 9.528 on 1 and 13 DF,  p-value: 0.008666  
 
> abline(tmp1) 

 
Plot the residuals as a function of Mom: 
 
> plot (Mom, tmp1$residuals) 

 
Does anyone think this looks "nice"? It sure looks like trouble to me! Stop here and tell me what 
you think is right or wrong with this figure. 
 
OK, let's move on to correlations. Pretend, for a moment, that you are sure that the product-
moment correlation is way cool for this dataset. 
 
> cor.test(Kid, Mom) 
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 Pearson's product-moment correlation 
 
data:  Kid and Mom  
t = 3.0867, df = 13, p-value = 0.008666 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 0.2070464 0.8720726  
sample estimates: 
      cor  
0.6503335 

 

And, to compute r2 = R2: 

 
> cor(Kid,Mom)^2 
[1] 0.4229336 

 
Note that the function cor() just computes the product-moment correlation without all the 
significance testing stuff. Only 42% of the variance is “covariance” between mom’s size and her 
offspring’s size.  
 
Well, are you happy with yourself? Me, I am filled with angst because I don't think that my data 
meet the assumptions of bivariate normality. It's a hard life analyzing data, but someone has got 
to do it... I think I will try a nonparametric correlation like Spearman's Rho or Kendall's Tau... I 
will do one, you do the other. . . 
 
> cor.test(Kid, Mom, method="ken", exact=FALSE) 
 
 Kendall's rank correlation tau 
 
data:  Kid and Mom  
z = 2.5857, p-value = 0.009719 
alternative hypothesis: true tau is not equal to 0  
sample estimates: 
      tau  
0.4976134 

 
I am concerned about the two abnormally small kids. Maybe they are sick or their Moms are 
parasitized or something. Let's get rid of them and then look at the product-moment correlation 
again. 
 
> Kid.mod<-Kid[Kid>5] 
> Mom.mod<-Mom[Kid>5] 
> plot(Mom.mod, Kid.mod) 
> abline(lm(Kid.mod~Mom.mod), col=”red”) 
> abline(lm(Kid~Mom), col=”grey”) #see the difference two points make 
 
> cor.test(Kid.mod, Mom.mod) 
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 Pearson's product-moment correlation 
 
data:  Kid.mod and Mom.mod  
t = 1.6064, df = 11, p-value = 0.1365 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 -0.1514515  0.7957675  
sample estimates: 
      cor  
0.4359094 

 
Wow. The significant relationship between Mom and Kid size went away. Those two points had 
what statisticians call "high leverage"; without them there is no significant correlation between 
the size of mom aphids and their kids. Looking at this data, I would say that there probably was a 
relationship but that I did not have enough data to evaluate it. Back to the field! 
 

10.3 Regression vs. correlation 
 
So, now we have learned how to calculate the relationship between two variables with a linear 
regression, and how to quantify the tightness of their relationship with Pearson's product-moment 
correlation. If two variables are related to each other, when does one use a regression, and when 
is it best to do a correlation? When checking whether or not there is a relationship between two 
variables, a correlation is most appropriate. In fact, it is really quite rare for a regression to be 
used. From a descriptive point of view, correlation is probably best. If you want to make 
predictions about Y from X, then regression is appropriate. Also, recall that we have assumed that 
we measure the X variable without error in the regression model. That assumption is often not 
correct. In correlation, both variables are assumed to be measured with some variation. There are 
special regression techniques for the case where you cannot feel good about this assumption, but 
we will probably just talk about those in lecture. 
 
Major questions arise when you move from describing or predicting to testing hypotheses. Here 
you must be careful; the catch is that regression can be used to imply causation. If you have no 
basis for that implication, then you should make that clear or just stick with correlation. 
 
One of the most common, non-hypothesis-testing uses of linear regression is to remove the effect 
of one variable on another, a procedure often called "adjusting" a variable. 
 

10.3.1 Adjusting the effect of one variable on another 
 
One of the reasons you might want to do a regression is to remove the effect of a confounding 
variable. The mating call of many species of frog provides information about the size of the 
signaling male, bigger males have deeper croaks. Another variable affects the fundamental 
frequency of frog calls, and that is temperature. Warmer frogs croak at a higher frequency. So off 
we go traipsing about in the dark with a thermometer and a microphone. For each calling male 
we record the call, note the temperature, them catch and weight the guy. Back in the lab we 
figure out the fundamental frequency of the call. 
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We're interested to know whether the call of this species of frog provides information about its 
weight. But, the variation in temperature is going to mess things up. Fortunately we can remove 
the variation due to temperature. 
 
> tmp5<-read.table("frogsData.txt", h=T) 
> summary(tmp5) 
      Mass            Temp           Freq       
 Min.   :2.700   Min.   :16.2   Min.   :715.0   
 1st Qu.:3.310   1st Qu.:22.5   1st Qu.:787.0   
 Median :4.210   Median :25.5   Median :834.0   
 Mean   :4.139   Mean   :25.3   Mean   :828.9   
 3rd Qu.:4.830   3rd Qu.:28.8   3rd Qu.:855.0   
 Max.   :6.280   Max.   :38.6   Max.   :984.0   
> pairs(tmp5,  diag.panel=panel.hist, 
+       lower.panel=panel.lowess) #panels from Lab 7 

 

 
 
Note the absence of any correlation between Mass and Temperature, this is very important! How 
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are we to remove the effect of temperature? We'll take the regression line of frequency and 
temperature and force it to be horizontal, so that there is no more effect of temperature upon 
frequency. 
 
We'll do this by figuring how far the expected value for each data point has to be moved to bring 
it up to a horizontal line. This distance is equal to the slope times the expected Y. 
 

! 

Yadj = Yi "
ˆ Y Freq#Temp = Yi " (Xi " X )b (10.4) 

where Y is Freq, X is Temp and b is the regression of Freq on Temp. 
 
Wait a minute, you may say! Isn't that adjusted value just the residuals from the regression of 
Freq on Temp? Yup. So, now we can analyze the relationship of call frequency to mass, with the 
effect of temperature removed from the data. 
 
> tmp5$Freq.adj<-residuals(lm(Freq~Temp, data=tmp5))+mean(tmp5$Freq) 
> pairs(tmp5[, c(1,2,4)], diag.panel=panel.hist,  
  + lower.panel=panel.lowess) 

 
 
Ah ha!!! So there IS a relationship between size and calling frequency!!! Note that I added the 
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grand mean frequency back to restore the scaling. Recall when we talked about ANOVA and 
how each effect was added to the grand mean? Here we have done the inverse operation; we 
have subtracted the effect of temperature on call frequency. What we are left with, in theory, is 
the call frequencies of these frogs recorded at the mean environmental temperature. 
 
You could then analyze this relationship via correlation. Is call frequency significantly correlated 
with body mass? First, let's look at the unadjusted frequencies just to assure ourselves that there 
was no VISIBLE relationship before we corrected for temperature. 
 
> cor.test(tmp5$Freq, tmp5$Mass, method="sp") 
 
 Spearman's rank correlation rho 
 
data:  tmp5$Freq and tmp5$Mass  
S = 2574, p-value = 0.9619 
alternative hypothesis: true rho is not equal to 0  
sample estimates: 
       rho  
0.01000385  
 

Not much of a relationship, eh? Now, how about those adjusted frequencies? 
 
> cor.test(tmp5$Freq.adj, tmp5$Mass, method="sp") 
 
 Spearman's rank correlation rho 
 
data:  tmp5$Freq.adj and tmp5$Mass  
S = 3914, p-value = 0.01085 
alternative hypothesis: true rho is not equal to 0  
sample estimates: 
       rho  
-0.5053846 

Pretty cool, huh? So, big frogs have deep voices. 
 

10.3.2 Adjusting "on the fly": multiple regression. 
 
These clever tricks that allow you to adjust one variable by another are automatically carried out 
in multiple regression. Recall that we considered ANCOV A, where we examined the effects of 
one continuous independent variable and one categorical independent variable on a continuous 
dependent variable. And in two- and three- and n-way ANOVA, we could look at the effect of 
multiple independent categorical variables on a continuous dependent variable. In the last lab, we 
examined how multiple continuous independent variables affect a single continuous dependent 
variable. This is called multiple regression. You can read more about the math in your text. As 
you might guess, there are lots of sums of squares involved. Here we will simply cut to the chase 
and say that multiple regression estimates the effect of each independent variable while holding 
all other independent variables constant. Thus, the regression coefficients are similar to (but not 
identical) to simple regressions on adjusted data. So, the basic equation is: 
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! 

Y
i
= a + b

X1
X
1

+ b
X 2
X
2

+ ...+ b
Xk
X
k

+ "  (10.5) 
 
The bXk's are called partial regression coefficients; these are the effects of factor Xk on Y,  
adjusted such that all other regressors are held constant. So, first let's look at our regression of 
adjusted frequencies on body mass: 
 
> summary(lm(Freq.adj~Mass, data=tmp5)) 
 
Call: 
lm(formula = Freq.adj ~ Mass, data = tmp5) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-19.0493  -5.6732  -0.7027   4.4686  26.6124  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  860.769      9.692   88.82  < 2e-16 *** 
Mass          -7.705      2.286   -3.37  0.00264 **  
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 10.49 on 23 degrees of freedom 
Multiple R-Squared: 0.3306, Adjusted R-squared: 0.3015  
F-statistic: 11.36 on 1 and 23 DF,  p-value: 0.002642 

 
No surprise, body mass predicts call frequency. Now, let's do the multiple regression and 
compare the slope for Mass on the adjusted frequency with the results when we include both 
Temp and Mass in a multiple regression model: 
 
> summary(lm(Freq~Temp+Mass, data=tmp5)) 
 
Call: 
lm(formula = Freq ~ Temp + Mass, data = tmp5) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-17.8272  -6.0050  -0.6704   4.4615  26.7711  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 559.3581    13.2576   42.19  < 2e-16 *** 
Temp         11.9307     0.3941   30.27  < 2e-16 *** 
Mass         -7.8101     2.3454   -3.33  0.00304 **  
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 10.69 on 22 degrees of freedom 
Multiple R-Squared: 0.9766, Adjusted R-squared: 0.9744  
F-statistic: 458.1 on 2 and 22 DF,  p-value: < 2.2e-16 
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You can see that the slopes of Mass are almost the same, but the multiple regression has a 
slightly larger error estimate and is, therefore, more conservative. This would be the preferred 
method for computing these slopes. 
 
10.4 Exercises 
 
1. Our frog call fundamental frequencies, temperatures, and masses are in frogsData.txt. Remove 
the effect of mass from Freq, then calculate the correlation coefficient between temperature and 
the adjusted frequency (anyway you want to). 
 
2. The file "brain_IQData.txt" contains data on Sex, IQ, Height, Weight, and MRI.Count (the 
count of pixels of brain tissue on a MRI scan, a measure of brain size). Does IQ vary with brain 
size? Does IQ vary with brain size corrected for body size? Are there gender differences? Have 
fun with this one (in a statistical sort of way...). 
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Chapter 11  
 
Computationally Intensive Statistics: An Introduction 
to Randomization and Bootstrapping  
 
Underlying all parametric statistics is the concept of the theoretical distribution. Recall that if 
you sample a population repeatedly, calculating the mean of each sample, that as the number of 
samples approaches infinity, the distribution of the means approaches a perfect normal 
distribution. Every parametric statistic is based on this idea of resampling, however nobody 
thought seriously about actually doing this exercise until the 1980's when computers began to be 
fast enough and small enough that most researchers could have one on their desktop. The field of 
computationally intensive statistics provides a robust, nonparametric way to build an empirical 
distribution of any statistic. The biggest advantage is that you can build this distribution for 
ANYTHING; the application is limited only by your imagination. The disadvantage is that, like 
all nonparametric methods, the power is slightly lower than the parametric approach. Also, even 
with a fast computer, the time required to bootstrap something like a complicated regression 
model could take several hours or days.  
 
Bootstrapping has become the standard procedure in making inference about phylogenetic trees. 
I use these methods all the time because they are so handy for odd things where no formal 
method of analysis exists, or where you have invented your own statistic and want to make some 
inference about it. Further readings: There are short sections on randomization tests and 
bootstrap procedures in Sokal & Rohlf in the final "Miscellaneous Methods" Chapter. For a 
relatively thorough practical introduction, see Efron & Tibshirani's An Introduction to the 
Bootstrap (1993, Chapman & Hall). Manly's Randomization and Monte Carlo Methods in 
Biology (1991, Chapman & Hall) is also a good, biologically based introduction. 
  

11.1 Randomization tests  
 
All the tests we have examined so far have generated test statistics that were then compared to a 
critical value. The critical value is that needed for that test statistic to generate a type I error 
some specified percentage (traditionally, 5%) of the time, given that the assumptions of the test 
are met. The assumptions are made regarding the underlying probability distribution that will be 
generated for the test statistic under the null hypothesis.  
 
When the assumptions are not met, we can use one of two alternative plans. The first is to change 
the test for one whose assumptions are not violated. This is the course we take when we employ 
a non-parametric test in the place of a parametric one when we have non-normality, or serious 
heteroscedasticity. The second alternative is to use the initial test, but to calculate a new critical 
threshold, one that does not make all the assumptions used to calculate the theoretical 
distribution under the null hypothesis. This is what the randomization test does.  
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11.1.1 Using randomization to assess differences in means  
 
Comparing two heteroscedastic samples, t is treatment group, and c is the control group. The 
test hypothesis is that treatment is greater than control; the null is that the two groups do not 
differ.  
 
> tst <- c(129,92,69,317,45,57,110,154,116) 
> con <- c(94,58,82,91,74,75,83,80,106,74,75,82,86,90) 
> mean(tst) 
[1] 121 
> var(tst) 
[1] 6641.5 
> mean(con) 
[1] 82.14286 
> var(con) 
[1] 129.8242 
> t.test(tst, con, var.equal=T, alt="greater") 
 
 Two Sample t-test 
 
data:  tst and con  
t = 1.7801, df = 21, p-value = 0.04477 
alternative hypothesis: true difference in means is greater than 0  
95 percent confidence interval: 
 1.294740      Inf  
sample estimates: 
mean of x mean of y  
121.00000  82.14286  
 
> var.test(tst,con) 
 
 F test to compare two variances 
 
data:  tst and con  
F = 51.1577, num df = 8, denom df = 13, p-value = 2.781e-08 
alternative hypothesis: true ratio of variances is not equal to 1  
95 percent confidence interval: 
  15.09972 212.92687  
sample estimates: 
ratio of variances  
          51.15765  

 
Whoa, those variances are sure different. Guess we cannot use the standard t-test here. There 
exists a method for the t-test that relaxes the assumption of equal variances (note it WISELY is 
the default in R. Note also that it is more conservative. The trick involves reducing the degrees of 
freedom. In this case, it also relieves us of our significant result, which is a bummer...  
 
> t.test(tst, con, alt="greater") 
 
 Welch Two Sample t-test 



BIOL425/680 Spring 2005 Lab Session 11 
 

 114 

 
data:  tst and con  
t = 1.4215, df = 8.202, p-value = 0.09603 
alternative hypothesis: true difference in means is greater than 0  
95 percent confidence interval: 
 -11.81268       Inf  
sample estimates: 
mean of x mean of y  
121.00000  82.14286  

 
11.1.2 Permutation of the data to create a frequency distribution for 
your test statistic  
 
In this example, we are interested in the difference between the two means. So, let's use that for 
our test statistic, which we will call "z.dif'. Note that, for some unknown reason, statisticians like 
to call any made up statistic z ...  
 
> z.dif <- mean(tst)-mean(con) 
> z.dif 
[1] 38.85714 

 
Now we need a probability distribution against which to compare our observed z score. We'll use 
a permutation scheme to construct the distribution z under H0: the samples from control and 
treatment groups are drawn from the same distribution. By definition, a permutation is just a 
rearrangement of our original data. What we'll do is to take all the data in both the treatment and 
control groups and combine them into one data vector. Then we'll randomly divide that data 
vector into two groups, with one the same size as our original test group and the other the size of 
our control group. The command sample() does this for us. (Take a look at its help file; the 
defaults just create a permutation. There are other options, however, that do all kinds of neat 
things that we will use later...). We then calculate a z-score as the difference between these 
random groups. We then shuffle the data around and do it all again. After a 999 times of this, we 
will have a frequency distribution for the differences between two samples of the same size as 
our test and control groups drawn from a common distribution. Note that we include our 
observed value as the first (actual placement is irrelevant…) in the output. One always includes 
the observed value in a randomization test! 
 
> null.dat<-c(tst, con) 
> n.test<-length(tst) 
> dat.out<-z.dif 
> for (i in seq(999)){ 
+   tmp1<-sample(null.dat) 
+   tmp1.t <- tmp1[1:n.test] 
+   tmp1.c <- tmp1[(n.test+1):length(tmp1)] 
+   tmp2 <- mean(tmp1.t)-mean(tmp1.c) 
+   tmp2 
+   dat.out <- c(dat.out, tmp2) 
+ } 
> hist(dat.out, col="grey", main=””) 
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11.1.3 Calculating the P value  
 
Now that we have a distribution of 
differences between two samples 
of a population defined by our 
data. We have a test statistic, our 
observed difference between 
means. Our test hypothesis is that 
the difference we observe is greater 
than that expected by chance alone. 
So, what is the probability of 
observing a difference in means as 
great or greater than 38. 85?  
 
> 
sum(dat.out>=z.dif)/1000 
[1] 0.04 
>abline(v=dat.out[1], 
col="red") 
 

The probability is just the 
proportion of our 1000 
observations as great or greater 
than the test statistic. We have a 
significant difference and we made NO assumptions about the distribution of the original data! 
Note that I have drawn a vertical line on the histogram to indicate where our observation falls. 
Note also that we do not care if the distribution of our statistic does not match a theoretical 
distribution. We have created an empirical distribution of the values we would expect from the 
difference between two samples drawn from a random permutation of our data.  
 

11.2 Using permutation to test a correlation  
 
You can do these "computationally intensive" approaches with any statistic. For example, 
consider Pearson's product-moment correlation:  
 
> lsat <- c(576, 635, 558, 578, 666, 580, 555, 661, 651, 605, 653,  
+           575, 545, 572, 594) 
> gpa <- c(3.39, 3.3, 2.81, 3.03, 3.44, 3.07, 3.00, 3.43, 3.36, 3.13, 
+          3.12, 2.74, 2.76, 2.88, 2.96) 
> plot(gpa, lsat, pch=16) 
> cor.test(gpa, lsat) 
 
 Pearson's product-moment correlation 
 
data:  gpa and lsat  
t = 4.4413, df = 13, p-value = 0.0006651 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
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 0.4385108 0.9219648  
sample estimates: 
      cor  
0.7763745  

 
Now, let's assume that you think the distributions are funky (i.e., not bivariate normal) and you 
have some absurd paranoia about using Kendall's Tau or something. Let's permute against the 
null hypothesis that the correlation we see is due to chance along. We will randomly pair LSAT 
and GPA scores to build up an empirical distribution of our null hypothesis and then ask how 
likely is a value as large or larger than our observed correlation of 0.776.  
 
> cor.obs <- cor(gpa, lsat) 
> dat.out<-cor.obs 
> for (i in seq(999)){ 
+   tmp.x<-sample(gpa) 
+   tmp.y<-sample(lsat) 
+   dat.out <- c(dat.out, cor(tmp.x, tmp.y)) 
+ } 
> cor.obs 
[1] 0.7763745 
> hist(dat.out, col="grey", main="") 
> abline(v=dat.out[1], col="red") 
> sum(dat.out>=cor.obs)/1000 
[1] 0.002 

 
Pretty easy, huh? No underlying distribution to worry about. What's wrong? You have to explain 
what you are doing to everyone, as these computationally intensive statistics are very flexible...  
 

11.3 Using the Jackknife to estimate confidence intervals.  
 
Sometimes you have a single number, like the correlation coefficient we just calculated above, 
and you want to estimate a confidence interval. If your data were bivariate normal, then you have 
a formula for the standard error of the correlation coefficient and you just plug and chug. But 
maybe we don't want to make that assumption. We want to estimate a standard error empirically. 
The Jackknife is such a technique. What you are going to do is create n new datasets each having 
n-l observations, where n is the number of observational units in your experiment. In the 
example above, we had 15 pairs of values, so we will end up with 15 datasets of 14 pairs. These 
15 values are called "pseudovalues" and are computed:  
 
 

! 

"
i

*
= n" # (n #1)"# i  (11.1)  

 
where φ is our observed value and φ-i is our "delete one" value. Notice that the effect of sample 
size (n) is incorporated here. You will end up with i = n pseudovalues  
 
From the pseudovalues, we compute the mean and standard error of our statistic and can then use 
these to calculate a confidence interval. The variance of the jackknifed values is the sample 
variance. The standard error of the jackknifed values is an estimate of the standard error of the 
mean statistic.  
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The jackknifed estimate of the statistic is the mean of the pseudovalues: 
 

 

! 

ˆ " * =
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n

 (11.2) 

 
The variance of the pseudovalues is: 
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and the standard error of the jackknifed statistic is: 
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 (11.4)  

 
Watch the code carefully to see what is going on… 
 
> tmp1<-data.frame(lsat, gpa)= 
> tmp.n<-nrow(tmp1) 
> dat.out <- NULL 
> for (i in seq(tmp.n)){ 
+   tmp2 <- tmp1[-i,] 
+   tmp3 <- cor(tmp2$lsat, tmp2$gpa) 
+   tmp4 <- tmp.n*cor.obs-(tmp.n-1)*tmp3 
+   dat.out <- c(dat.out, tmp4) 
+ } 
> cor.obs 
[1] 0.7763745 
> mean(dat.out) #the jackknifed estimate of the correlation 
[1] 0.7828481 
> sd(dat.out)/sqrt(tmp.n) #the standard error of the estimate 
[1] 0.1425186 

 
You generally report the mean of the jackknifed values. The 95% confidence interval is given by 

! 

ˆ " ± t #
2,n$1( )s ˆ " 

, using the t-distribution at your α of choice with n-l degrees of freedom as usual:  

 
> paste("Lower 95% CI:", round(mean(dat.out)- 
+              qt(0.025,tmp.n-1,lower=F)*sd(dat.out)/sqrt(tmp.n),4)) 
[1] "Lower 95% CI: 0.4772" 
> paste("Upper 95% CI:", round(mean(dat.out)+ 
+              qt(0.025,tmp.n-1,lower=F)*sd(dat.out)/sqrt(tmp.n),4)) 
[1] "Upper 95% CI: 1.0885" 
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Note that the confidence interval is shifted upwards (bracketing 1) but is not much broader than 
that for the parametric test. You can compare this result yourself with Kendall’s and/or 
Spearman’s. 
 
> cor.test(lsat, gpa) 
 
 Pearson's product-moment correlation 
 
data:  lsat and gpa  
t = 4.4413, df = 13, p-value = 0.0006651 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 0.4385108 0.9219648  
sample estimates: 
      cor  
0.7763745 

 

11.4 The bootstrap 
 
11.4.1 Obtaining the bootstrap distribution  
 
Bootstrapping (from the phrase "pulling yourself up by your own bootstraps") is one of the most 
widely used methods of obtaining an empirical distribution for computing confidence intervals. 
It is relatively quick (if you have a fast computer) and very robust. Basically it is similar to the 
permutation test, however we sample our experimental units WITH REPLACEMENT. In this 
example, we are building up an empirical distribution of estimates of the correlation coefficient 
itself. The observed value should always be included in the bootstrapped values, as you will see 
below. [Note: You could do a bootstrap to test the hypothesis of no correlation that we did in the 
permutation test by simply sampling with replacement instead of permuting. We will do that as 
an exercise…] Because you are sampling without replacement, every time you run this test you 
will obtain slightly different values. Here we go:  
 
> tmp1 <- data.frame(lsat, gpa) 
> tmp.n <- nrow(tmp1) 
> dat.out <- cor.obs 
> for (i in seq(999)){ 
+   tmp2 <- tmp1[sample(seq(tmp.n), replace=T),] 
+   tmp3 <- cor(tmp2$lsat, tmp2$gpa) 
+   dat.out <- c(dat.out, tmp3) 
+ } 
>  
> hist(dat.out, col="grey", main="") 
> abline(v=cor.obs, col="red") 
> cor.obs   #the observed correlation 
[1] 0.7763745 
> mean(dat.out)  #the bootstrapped correlation 
[1] 0.7771371 
> sd(dat.out)   #the standard error of the bootstrapped correlation 
[1] 0.1291185 
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The standard error of the bootstrap is 
simply the standard deviation of the 
bootstrapped values.  
 
11.4.2 Calculating a 
confidence interval using the 
bootstrap distribution  
 
You already have computed the empirical 
distribution, so an estimate of the 95% 
confidence intervals would be obtained 
by the 2.5%th and 97.5%th values. This is 
the preferred approach, although you do 
not end up with symmetrical values most 
of the time.  
 
> alpha <- 0.05 
> n.boot <- length(dat.out) 
> min.rank <- 
ceiling(alpha*n.boot/2) 
> max.rank <- floor(n.boot-
(alpha*n.boot/2)) 
> min.rank 
[1] 25 
> max.rank 
[1] 975 
> tmp1<-sort(dat.out) 
> cor.obs   #the observed correlation 
[1] 0.7763745 
> paste("Lower 95% CI:", round(tmp1[min.rank],4)) 
[1] "Lower 95% CI: 0.4853" 
> paste("Upper 95% CI:", round(tmp1[max.rank],4)) 
[1] "Upper 95% CI: 0.964" 
 

11.4.3 Bootstrapping to test a hypothesis 
 
The bootstrap is very flexible in that you can use it to make confidence limits or you can use it in 
the context of frequentist hypothesis testing. Consider this example testing a regression 
hypothesis. CD4 cells are carried in the blood as part of the human immune system. One of the 
effects of the HIV virus is that these cells die. The count of CD4 cells is used in determining the 
onset of full-blown AIDS in a patient. In this study of the effectiveness of a new anti-viral drug 
on HIV, 20 HIV-positive patients had their CD4 counts recorded and then were put on a course 
of treatment with this drug. After using the drug for one year, their CD4 counts were again 
recorded. The aim of the experiment was to show that patients taking the drug had increased 
CD4 counts, which is not generally seen in HIV-positive patients. It seems straightforward to 
consider a regression of the one year count on the baseline, to get an estimate of the rate at which 
CD4 cells increased in these patients. 
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> library(boot) 
> data(cd4) 
> summary(cd4) 
    baseline        oneyear      
 Min.   :1.880   Min.   :2.400   
 1st Qu.:2.635   1st Qu.:3.178   
 Median :3.350   Median :4.160   
 Mean   :3.288   Mean   :4.093   
 3rd Qu.:3.837   3rd Qu.:4.775   
 Max.   :5.100   Max.   :6.360   
> summary(tmp1<-lm(oneyear~baseline, data=cd4)) 
 
Call: 
lm(formula = oneyear ~ baseline, data = cd4) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.3950 -0.5382 -0.1561  0.5856  1.4888  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.6904     0.7878   0.876 0.392377     
baseline      1.0349     0.2330   4.442 0.000315 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 0.8231 on 18 degrees of freedom 
Multiple R-Squared: 0.523, Adjusted R-squared: 0.4965  
F-statistic: 19.73 on 1 and 18 DF,  p-value: 0.0003147  
 
> plot(oneyear~baseline, 
data=cd4,axes=F, 
xlab="Baseline CD4    
count", ylab="One year 
CD4 count", pch=16) 
> axis(1) 
NULL 
> axis(2, las=1) 
NULL 
> 
lines(range(cd4$baseline)
, range(predict(tmp1)), 
col="red" 

 
That looks pretty good, but one 
might be a little concerned about 
the assumptions of the regression 
model. For example, maybe this 
effect has nothing to do with the 
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drug regime, but simply reflects some unknown environmental factor that caused higher counts 
in all patients in year. As we see below, the overall counts were higher… 
 
> apply(cd4, 2, mean) 
baseline  oneyear  
   3.288    4.093 

 
We can bootstrap this null hypothesis (that the counts from the baseline and the counts from 
one year represent two random samples from populations at each time). We will randomly pair 
values from the baseline with values from year one (ignoring the patient) to see if there was 
some general pattern of increase over time. We will compute the regression slopes on 1000 
bootstrapped samples and compare these with our observed value. 
 

> tmp.out<-tmp1$coefficients[2] 
> for (i in seq(999)){ 
+   t.one<-sample(cd4$oneyear, replace=T) 
+   t.base<-sample(cd4$baseline, replace=T) 
+   tmp.out<-c(tmp.out, lm(t.one~t.base)$coefficients[2]) 
+ } 
> hist(tmp.out, col="grey", main="") 
> abline(v=tmp.out[1], col="red") 
> sum(abs(tmp.out)>=tmp.out[1])/1000  #two tailed test… 
[1] 0.003 
> 

 
Only 3 in 1000 bootstrapped samples had a slope as extreme as the one we observed (*your 
result will differ from this because of the random sampling!). You can see how extreme the 
observed regression value was. It appears that there was a highly significant increase in CD4 
counts in the patients.  
 
 

Exercise 
 

1. Do a bootstrap of the difference in means using the data in 11.1.1 and compare the results 
with those from the randomization test. 
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